usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

One&Done: A Single-Decryption EM-Based Attack
on OpenSSL’s Constant-Time Blinded RSA

Monjur Alam, Haider Adnan Khan, Moumita Dey, Nishith Sinha, Robert Callan,
Alenka Zajic, and Milos Prvulovic, Georgia Tech

https://www.usenix.org/conference/usenixsecurity18/presentation/alam

This paper is included in the Proceedings of the

27th USENIX Security Symposium.
August 15-17, 2018 - Baltimore, MD, USA
ISBN 978-1-931971-46-1

Open access to the Proceedings of the
27th USENIX Security Symposium
is sponsored by USENIX.

One&Done: A Single-Decryption EM-Based Attack
on OpenSSL’s Constant-Time Blinded RSA

Haider A. Khan
Georgia Tech

Alenka Zajic
Georgia Tech

Monjur Alam
Georgia Tech

Abstract

This paper presents the first side channel attack approach
that, without relying on the cache organization and/or
timing, retrieves the secret exponent from a single de-
cryption on arbitrary ciphertext in a modern (current ver-
sion of OpenSSL) fixed-window constant-time imple-
mentation of RSA. Specifically, the attack recovers the
exponent’s bits during modular exponentiation from ana-
log signals that are unintentionally produced by the pro-
cessor as it executes the constant-time code that con-
structs the value of each “window” in the exponent,
rather than the signals that correspond to squaring/multi-
plication operations and/or cache behavior during multi-
plicand table lookup operations. The approach is demon-
strated using electromagnetic (EM) emanations on two
mobile phones and an embedded system, and after only
one decryption in a fixed-window RSA implementation
it recovers enough bits of the secret exponents to enable
very efficient (within seconds) reconstruction of the full
private RSA key.

Since the value of the ciphertext is irrelevant to our at-
tack, the attack succeeds even when the ciphertext is un-
known and/or when message randomization (blinding) is
used. Our evaluation uses signals obtained by demodu-
lating the signal from a relatively narrow band (40 MHz)
around the processor’s clock frequency (around 1GHz),
which is within the capabilities of compact sub-$1,000
software-defined radio (SDR) receivers.

Finally, we propose a mitigation where the bits of the
exponent are only obtained from an exponent in integer-
sized groups (tens of bits) rather than obtaining them one
bit at a time. This mitigation is effective because it forces
the attacker to attempt recovery of tens of bits from a sin-
gle brief snippet of signal, rather than having a separate
signal snippet for each individual bit. This mitigation
has been submitted to OpenSSL and was merged into its
master source code branch prior to the publication of this

paper.

Moumita Dey
Georgia Tech

Nishith Sinha
Georgia Tech

Robert Callan
Georgia Tech

Milos Prvulovic
Georgia Tech

1 Introduction

Side channel attacks extract sensitive information, such
as cryptographic keys, from signals created by electronic
activity within computing devices as they carry out com-
putation. These signals include electromagnetic emana-
tions created by current flows within the device’s com-
putational and power-delivery circuitry [2 |3, [14, 21} |33}
46|, variation in power consumption [9} 12} [15} [17, 23}
26, 1341 135136, 141]], and also sound [6, [16, |24, 142], tem-
perature [13| 29]], and chasis potential variation [23]] that
can mostly be attributed to variation in power consump-
tion and its interaction with the system’s power delivery
circuitry. Finally, not all side channel attacks use ana-
log signals: some use faults [[11, 25], caches [8l 43} 44],
branch predictors [1]], etc.

Most of the research on physical side-channel attacks
has focused on relatively simple devices, such as smart-
cards and simple embedded systems, where the side-
channel signals can be acquired with bandwidth much
higher than the clock rates of the target processor and
other relevant circuitry (e.g. hardware accelerators for
encryption/decryption), and usually with highly intrusive
access to the device, e.g. with small probes placed di-
rectly onto the chip’s package [19l 35]. Recently, at-
tacks on higher-clock-rate devices, such as smartphones
and PCs , have been demonstrated [7, 20, 21} 22]. They
have shown that physical side channel attacks are pos-
sible even when signals are acquired with bandwidth
that is much lower than the (gigahertz-range) clock rates
of the processor, with less-intrusive access to the de-
vice, and even though advanced performance-oriented
features, such as super-scalar (multiple instructions per
cycle) execution and instruction scheduling, and system
software activity, such as interrupts and multiprocessing,
cause significant variation in both shape and timing of
the signal produced during cryptographic activity.

To overcome the problem of low bandwidth and vari-
ation, successful attacks on high-clock-rate systems tend

USENIX Association

27th USENIX Security Symposium 585

to focus on parts of the signal that correspond to activity
that takes many processor cycles. A representative exam-
ple of this is decryption in RSA, which consists of modu-
lar exponentiation of the ciphertext with an exponent that
is derived from the private key. The attacker’s goal is to
recover enough bits of that secret exponent through side-
channel analysis, and use that information to compute the
remaining parts of the secret key. Most of the computa-
tional activity in large-integer modular exponentiation is
devoted to multiplication and squaring operations, where
each squaring (or multiplication) operation operates on
large integers and thus takes many processor cycles.

Prior physical side-channel attacks on RSA rely on
classifying the signals that correspond to large-integer
square and multiply operations that together represent
the vast majority of the computational work when per-
forming large-integer exponentiation [10, 20, 23| 24].
Between these long-lasting square and multiply opera-
tions are the few processor instructions that are needed
to obtain the next bit (or group of bits) of the se-
cret exponent and use that to select whether the next
large-integer operation will be squaring or multiplica-
tion, and/or which operands to supply to that operation.
The focus on long-lasting operations is understandable,
given that side channel attacks ultimately recover infor-
mation by identifying the relevant sub-sequences of sig-
nal samples and assessing which of the possible cate-
gories is the best match for each sub-sequence. The
sub-sequences that correspond to large-integer opera-
tions produce long sub-sequences of samples, so they 1)
are easier to identify in the overall sequence of samples
that corresponds to the entire exponentiation, and 2) pro-
vide enough signal samples for successful classification
even when using relatively low sampling rates.

However, the operands in these large-integer opera-
tions are each very regular in terms of the sequence of
instructions they perform, and the operands used in those
instructions are ciphertext-dependent, so classification of
signals according to exponent-related properties is diffi-
cult unless 1) the sequence of square and multiply oper-
ations is key-dependent or 2) the attacker can control the
ciphertext that will be exponentiated, and chooses the ci-
phertext in a way that produces systematically different
side channel signals for each of the possible exponent-
dependent choices of operands.

1.1 Our Contributions

In this paper we present a side-channel attack that is
based on analysis of signals that correspond to the brief
computation activity that computes the value of each
window during exponentiation, i.e. activity between
large-integer multiplications, in contrast to most prior
work that focuses on the large-integer multiplications

themselves and/or the table lookups that obtain the mul-
tiplicand for the computed window value. The short du-
ration of these window value computations may hinder
signal-based classification to some extent. However, the
values these computations operate on are related to the
individual bits of the secret exponent and not the message
(ciphertext). This absence of message-induced variation
allows the small variation caused by different values of
an individual exponent bit to “stand out” in the signal and
be accurately matched to signals from training. More
importantly, this message-independence makes the new
attack completely immune to existing countermeasures
that focus on thwarting chosen-ciphertext attacks and/or
square/multiply sequence analysis.

The experimental evaluation of our attack approach
was performed on two Android-based mobile phones and
an embedded system board, all with ARM processors op-
erating at high (800 MHz to 1.1 GHz) frequencies, and
the signal is acquired in the 40 MHz band around the
clock frequency, resulting in a sample rate that is <5% of
the processor’s clock frequency, and well within the sig-
nal capture capabilities of compact commercially avail-
able sub-$1,000 software-defined radio (SDR) receivers
such as the Ettus B200-mini. The RSA implementation
we target is the constant-time fixed-window implemen-
tation used in OpenSSL [38] version 1.1.0g, the latest
version of OpenSSL at the time this paper was written.
Our results show that our attack approach correctly re-
covers between 95.7% and 99.6% (depending on the tar-
get system) of the secret exponents’ bits from the sig-
nal that corresponds to a single instance of RSA decryp-
tion, and we further verify that the information from each
instance of RSA encryption/signing in our experiments
was sufficient to quickly (on average <1 second of ex-
ecution time) fully reconstruct the private RSA key that
was used.

To further evaluate our attack approach, we apply it to
a sliding-window implementation of modular exponen-
tiation in OpenSSL — this was the default implementa-
tion in OpenSSL until Percival et al. [39] demonstrated
that its key-dependent square/multiply sequence makes it
vulnerable to side channel attacks. We show that in this
implementation our approach also recovers nearly all of
the secret-exponent bits from a single use (exponentia-
tion) of that secret exponent.

To mitigate the side-channel vulnerability exposed by
our attack approach, we change the window value com-
putation to obtain a full integer’s worth of bits from the
exponent, then mask that value to obtain the window
value, rather than constructing the window value one bit
at a time with large-number Montgomery multiplication
between these one-bit window-value updates. This mit-
igation causes the signal variation during the brief win-
dow computation to depend on tens of bits of the expo-

586 27th USENIX Security Symposium

USENIX Association

nent as a group, i.e. the signal variation introduced by
one bit in the exponent during the window computation
is now superimposed to the variation introduced by the
other bits in the group, instead of having each bit’s vari-
ation alone in its own signal snippet. Our experiments
show that this mitigation actually improves exponenti-
ation performance slightly and, more importantly, that
with this mitigation the recovery rate for the exponents
bits becomes equivalent to random guessing. This miti-
gation has been submitted to OpenSSL and was merged
into its master source code branch on May 30th, 2018,
prior to the publication of this paper.

1.2 Threat Model
1.2.1 Assumptions

Our attack model assumes that there is an adversary
who wishes to obtain the secret key used for RSA-based
public-key encryption or authentication. We further as-
sume that the adversary can bring a relatively compact
receiver into close proximity of the system performing
these RSA secret-key operation, for example a smart-
infrastructure or smart-city device which uses public key
infrastructure (PKI) to authenticate itself and secure its
communication over the Internet, and which is located in
a public location, or that the adversary can hide a rela-
tively compact receiver in a location where systems can
be placed in close proximity to it, e.g. under a cellphone
charging station at a public location, under the tabletop
surface in a coffee shop, etc.).

We assume that the adversary can access another de-
vice of the same type as the one being attacked, which
is a highly realistic assumption in most attack scenarios
described above, and perform RSA decryption/authen-
tication with known keys in preparation for the attack.
Unlike many prior attacks on RSA, we do not assume
that the adversary can choose (or even know) the mes-
sage (ciphertext for RSA decryption) to which the pri-
vate key will be applied, and we further assume that the
RSA implementation under attack does utilize blinding
to prevent such chosen-ciphertext attacks. Finally, we as-
sume that it is highly desirable for the attacker to recover
the secret key after only very few uses (ideally only one
use) of that key on the target device. This is a very re-
alistic assumption because PKI is typically used only to
set up a secure connection, typically to establish the au-
thenticity of the communication parties and establish a
symmetric-encryption session key, so in scenarios where
the attacker’s receiver can only be in close proximity to
the target device for a limited time, very few uses of the
private RSA key may be observed.

1.2.2 Targeted Software

The software we target is OpenSSL version 1.1.0g [38]],
the latest version of OpenSSL at the time this paper was
written. Its RSA decryption uses constant-time fixed-
window large-number modular exponentiation to miti-
gate both timing-based attacks and attacks that exploit
the exponent-dependent variation in the square-multiply
sequence. The lookup tables used to update the result
at the end of each window are stored in scattered form
to mitigate attacks that examine the cache and memory
behavior when reading these tables, and the RSA imple-
mentation supports blinding (which we turn on in our
experiments) to mitigate chosen-ciphertext attacks.

1.2.3 Targeted Hardware

The hardware we target are two modern Android-based
smartphones and a Linux-based embedded system board,
all with ARM processor clocked at frequencies around
1GHz. In our experiments we place probes very close,
but without physical contact with the (unopened) case of
the phone, while for the embedded system board we po-
sition the probes 20 cm away from the board, so we con-
sider the demonstrated attacks close-proximity but non-
intrusive.

1.2.4 Current Status of Mitigation

The mitigation described in this paper has been sub-
mitted as a patch for integration into the main branch
of OpenSSL. This patch was merged into the “master”
branch of OpenSSL’s source code on May 20th, 2018,
before this paper was published.

2 Background

Long-lasting operations (such as large-integer square and
multiply operations) facilitate matching by producing
numerous signals samples even when the signal is col-
lected at a limited sample rate.

A representative example is RSA’s decryption, which
at its core performs modular exponentiation of the ci-
phertext ¢ with a secret exponent (d) modulo m or, in
more a efficient implementation that rely on the Chi-
nese Reminder Theorem (CRT), two such exponentia-
tions, with secret exponents d, and d, with modulo p
and g, respectively. The side-channel analysis thus seeks
to recover either d or, in CRT-based implementations, d,
and d, using side-channel measurements obtained while
exponentiation is performed.

The exponentiation is implemented as either left-to-
right (starting with the most significant bits) or right-
to-left (starting with the least significant bits) traversal

USENIX Association

27th USENIX Security Symposium 587

1 // result r starts out as 1
2 BN_one(r);

3 // For each bit of exponent d
4 for (b=bits —1;b>=0;b——){

5 // r = rxr mod m

6 BN_mod_mul(r,r,r,m);

7 if (BN_is_bit_set(d,b))

8 // r = rxc mod m

9 BN_mod_mul(r,r,c,m);

10 }

Figure 1: A simple implementation of large-number
modular exponentiation

of the bits of the exponents, using large-integer modu-
lar multiplication to update the result until the full expo-
nentiation is complete. Left-to-right implementations are
more common, and without loss of generality we use ¢
to denote the ciphertext, d for the secret exponent, and m
for the modulus. A simple implementation of exponen-
tiation considers one exponent bit at a time, as shown in
Figure[I]} which is adapted from OpenSSL’s source code.

The BN prefix in Figure[I]stands for “Big Number” (i.e.
large integer). Each large integer is represented by a vec-
tor of limbs, where a limb is an ordinary (machine-word-
sized) integers. The BN_is_bit_set(d,b) function re-
turns the value (0 or 1) of the b-th bit of large-integer
exponent d, which only requires a few processor instruc-
tions: compute the index of the array element that con-
tains the requested bit, load that element, then shift and
bit-mask to keep only the requested bit. The instructions
that implement the loop, the if statement, and function
call/return are also relatively few in number.

However, the BN_mod mul operation is much more
time-consuming: it requires numerous multiplication in-
structions that operate on the limbs of the large-integer
multiplicands. Large integers ¢, d, and m (or, in CRT-
based implementations the d;, d), and the corresponding
moduli), all have O(n) bits and thus O(n) limbs, where n
is the size of the RSA cryptographic key. A grade-school
implementation of BN_mod mul thus requires O(n?) limb
multiplications, but the Karatsuba multiplication algo-
rithm [30]] is typically used to reduces this to O(n/?823) ~
O(n'%), In most modern implementations a significant
further performance improvement is achieved by con-
verting the ciphertext to a Montgomery representation,
using Montgomery multiplication for BN_mod_mul dur-
ing exponentiation, and at the end converting the result »
back to the standard representation.

Even with Montgomery multiplication, however, the
vast majority of execution time for large-number expo-
nentiation is spent on large-number multiplications, so
performance optimizations focus on reducing the num-
ber of these multiplications. Likewise, most of the side-
channel measurements (e.g. signal samples) collected

during large-number exponentiation correspond to large-
number multiplication activity, so existing side channel
cryptanalysis approaches tend to target multiplication ac-
tivity.

One class of attacks focuses on distinguishing be-
tween squaring (r * r) and multiplication (r * c¢) opera-
tions, and recovering information about the secret ex-
ponent from the sequence in which they occur. Ex-
amples of such attacks include FLUSH+RELOAD [43]]
(which uses instruction cache behavior) and Percival’s
attack [39], which uses data cache behavior. In the naive
implementation above, an occurrence of squaring tells
the attacker that the next bit of the exponent is being
used, and an occurrence of multiplication indicates that
the value of that bit is 1, so an attack that correctly re-
covers the square-multiply sequence can trivially obtain
all bits of the secret exponent.

To improve performance, most modern implementa-
tions use window-based exponentiation, where squaring
is needed for each bit of the exponent, but a multipli-
cation is needed only once per a multi-bit group (called
a window) of exponent bits. A left-to-right (starting at
the most significant bit) sliding-window implementation
scans the exponent bits and forms windows of varying
length. Since a window that contains only zero bits re-
quires no multiplication (and thus cannot benefit from
forming multi-bit windows), only windows that begin
and end with 1-valued bits are allowed to form multi-
bit windows, whereas zero bits in-between these win-
dows are each treated as their own single-bit windows
that can omit multiplication. A sliding-window imple-
mentation is shown in Figure 2] using code adapted from
OpenSSL’s source code for sliding-window modular ex-
ponentiation. The sliding-window approach chooses a
maximum size wmax for the windows it will use, pre-
computes a table ct that contains the large-integer value
c"'modm for each possible value wval up to wmax
length, and then scans the exponent, forming windows
and updating the result for each window.

In this algorithm, a squaring (lines 7 and 26 in Fig-
ure [2) is performed for each bit while the multiplication
operation (line 29) is performed only at the (1-valued)
LSB of a non-zero window. Thus the square-multiply
sequence reveals where some of the 1-valued bits in
the exponent are, and additional bits of the exponent
have been shown to be recoverable [10] by analyzing
the number of squaring between each pair of multiplica-
tions. The fraction of bits that can be recovered from the
square-multiply sequence depends on the maximum win-
dow size wmax, but commonly used values of wmax are
relatively small and prior work [[10] has experimentally
demonstrated recovery of 49% of the exponent’s bits on
average when wmax = 4 based on the square-multiply se-
quence. Additional techniques [[10}[28]] have been shown

588 27th USENIX Security Symposium

USENIX Association

1 BN_one(r);

2 wstart=bits —1;

3 while(wstart >=0){

4 if (! BN_is_bit_set(d, wstart)){
5 // Window is 0, square and
6 // begin a new window

7 BN_mod_mul(r,r,r ,m);

8 wstart ——;

9 continue;

10 }

11 wval=1;

12 w=1;

13 // Scan up to max window length
14 for (i=1;i<wmax;i++){

15 // Don’t go below exponent’s LSB
16 if (wstart—i <0)

17 break ;

18 // If 1 extend window to it
19 if (BN_is_bit_set(d, wstart—i)){
20 wval=(wval<<(i—-w+1))+1;

21 w=1;

22 }

23 }

24 // Square result w times

25 for(i=0;i<w;i++)

26 BN_mod_mul(r,r,r,m);

27 // Multiply window’s result
28 // into overall result

29 BN_mod_mul(r,r,ct[wval>>1]m);
30 // Begin a new window

31 wstart —=w;

32}

Figure 2: Sliding-window implementation of large-
number modular exponentiation

to recover the full RSA private key once enough of the
exponent bits are known, and for wmax = 4 this has al-
lowed full key recovery for 28% of the keys [10]. Fi-
nally, recent work has shown that fine-grained control
flow tracking through analog side channels can be very
accurate [32]. Because this sliding-window implemen-
tation uses each bit of the exponent to make at least one
control flow decision, highly accurate control flow recon-
struction amounts to discovering the exponent’s bits with
some probability of error.

Concerns about the exponent-dependent square-
multiply sequences have led to adoption of fixed win-
dow exponentiation in OpenSSL, which combines the
performance advantages of window-based implementa-
tion with an exponent-independent square-multiply se-
quence. This implementation is represented in Figure
again adapted from OpenSSL’s source code.

All windows now have the same number of bits w,
with exactly one multiplication performed for each win-
dow — in fact, all of the control flow is now exactly the
same regardless of the exponent. Note that the window

1 b=bits —1;

2 while (b>=0){

3 wval=0;

4 // Scan the window,

5 // squaring the result as we go
6 for (i=0;i<w;i++) {

7 BN_mod_mul(r,r,r ,m);

8 wval <<=1;

9 wval+=BN_is_bit_set(d,b);
10 b——;

11 }

12 // Mulitply window’s result

13 // into the overall result

14 BN_mod_mul(r,r,ct[wval],m);

15 }

Figure 3: Fixed-window implementation of large-

number modular exponentiation

value (which consists of the bits from the secret expo-
nent) directly determines which elements of ct are ac-
cessed. These elements are each a large integers, each of
which is typically stored as an array or ordinary integers
(e.g. OpenSSL’s “Big Number” BN structure). Since
each such array is much larger than a cache block, differ-
ent large integers occupy distinct cache blocks, and thus
the address the cache set that is accessed when reading
the elements of the ct array reveals key material. Perci-
val’s attack [39], for example, can note the sequence in
which the cache sets are accessed by the victim during
fixed-window exponentiation, which reveals which win-
dow values were used and in what sequence, which in
turns yields the bits of the secret exponent. To mitigate
such attacks, the implementation in OpenSSL has been
changed to store ct such that each of the cache blocks it
contains parts from a number of ¢t elements, and there-
fore the sequence of memory blocks that are accessed in
each ct [wval] lookup leak none or very few bits of that
lookup’s wval.

Another broad class of side channel attacks relies on
choosing the ciphertext such that the side-channel be-
havior of the modular multiplication reveals which of
the possible multiplicands is being used. For example,
Genkin et al. [23,24] construct a ciphertext that produces
many zero limbs in any value produced by multiplication
with the ciphertext, but when squaring such a many-zero-
limbed value the result has fewer zero limbs, resulting in
an easily-distinguishable side channel signals whenever
a squaring operation (BN_mod mul (r,r,r,m) in our ex-
amples) immediately follows a 1-valued window (i.e.
when 7 is equal to 7y, * ¢ mod m). This approach has
been extended [21]] to construct a (chosen) ciphertext that
reveals when a particular window value is used in mul-
tiplication in a windowed implementation, allowing full
recovery of the exponent by collecting signals that cor-

USENIX Association

27th USENIX Security Symposium 589

respond to 2" chosen ciphertexts (one for each window
value). However, chosen-ciphertext attacks can be pre-
vented in the current implementation of OpenSSL by en-
abling blinding, which combines the ciphertext with an
encrypted (using the public key) random “ciphertext”,
performs secret-exponent modular exponentiation on this
blinded version of the ciphertext, and then “unblinding”
the decrypted result.

Overall, because large-integer multiplication is where
large-integer exponentiation spends most of its time,
most of the side-channel measurements (e.g. signal sam-
ples for physical side channels) also correspond to this
multiplication activity and thus both attacks and miti-
gation tend to focus on that part of the signal, leaving
the (comparably brief) parts of the signal in-between the
multiplications largely unexploited by attacks but also
unprotected by countermeasures. The next section de-
scribes our new attack approach that targets the signal
that corresponds to computing the value of the window,
i.e .the signal between the multiplications.

3 Proposed Attack Method

In both fixed- and sliding-window implementations, our
attack approach focuses on the relatively brief periods of
computation that considers each bit of the exponent and
forms the window value wval. The attack approach has
three key components that we will discuss as follows.
First, Section [3.1] describes how the signal is received
and pre-processed. Second, Section describes how
we identify the point in the signal’s timeline where each
interval of interest begins. Finally, we describe how the
bits of the secret exponent are recovered from these sig-
nal snippets for fixed-window (Section [3.3)) and sliding-
window (Section [3.4) implementations.

3.1 Receiving the Signal

The computation we target is brief and the different val-
ues of exponent bits produce relatively small variation in
the side-channel signal, so the signals subjected to our
analysis need to have sufficient bandwidth and signal-
to-noise ratio for our analysis to succeed. To maximize
the signal-to-noise ratio while minimizing intrusion, we
position EM probes just outside the targeted device’s en-
closure. We then run RSA decryption in OpenSSL on
the target device while recording the signal in a 40 MHz
band around the clock frequency. The 40 MHz band-
width was chosen as a compromise between recovery
rate for the bits of the secret exponent and the avail-
ability and cost of receivers capable of capturing the de-
sired bandwidth. Specifically, the 40 MHz bandwidth
is well within the capabilities of Ettus USRP B200-mini
receiver, which is very compact, costs less than $1,000,

and can receive up to 56 MHz of bandwidth around a
center frequency that can be set between 70 MHz and 6
GHz, and yet the 40 MHz bandwidth is sufficient to re-
cover nearly all bits of the secret exponent from a single
instance of exponentiation that uses that exponent.

We then apply AM demodulation to the received sig-
nal, and finally upsample it by a factor of 4. The upsam-
pling consists of interpolating through the signal’s exist-
ing sample points and placing additional points along the
interpolated curve. This is needed because our receiver’s
sampling is not synchronized in any way to the compu-
tation of interest, so two signal snippets collected for the
same computation may be misaligned by up to half of the
sample period. Upsampling allows us to re-align these
signals with higher precision, and we found that 4-fold
upsampling yields sufficient precision for our purposes.

3.2 Identifying Relevant Parts
of the Signal

Figure [shows a brief portion of the signal that begins
during fixed-window exponentiation in OpenSSL. It in-
cludes part of one large-number multiplication (Line 7 in
Figure [3), which in OpenSSL uses the Montgomery al-
gorithm and a constant-time implementation designed to
avoid multiplicand-dependent timing variation that was
exploited by prior side-channel attacks. The point in time
where Montgomery multiplication returns and the rele-
vant part of the signal begins is indicated by a dashed
vertical line in Figure 4| In this particular portion of the
signal, the execution proceeds to lines 8 and 9 Figure 2
where a bit of the exponent is obtained and added to
wval, then lines 10 and 6, and then 7 where, at the point
indicated by the second dashed vertical line, it enters an-
other Montgomery multiplication, whose signal contin-
ues well past the right edge of Figure 4] As indicated in
the figure, the relevant part of the signal is very brief rel-
ative to the duration of the Montgomery multiplication.

A naive approach to identifying the relevant snippets
in the overall signal would be to obtain reference sig-
nal snippets during training and then, during the attack,
match against these reference snippets at each position
in the signal and use the best-matching parts of the sig-
nal. Such signal matching works best when looking for a
snippet that has prominent features, so they are unlikely
to be obscured by the noise, and whose prominent fea-
tures occur in a pattern which is unlikely to exist else-
where in the signal. Unfortunately, the signal snippets
relevant for our analysis have little signal variation (rela-
tive to other parts of the signal) and a signal shape (just
a few up-and-downs) that many other parts of the sig-
nal resemble. In contrast, the signal that corresponds
to the Montgomery multiplication has stronger features,
and they occur in a very distinct pattern.

590 27th USENIX Security Symposium

USENIX Association

Constant-Time
Montgomery Multiplication
Ends

Demodulated Signal

= ==-Moving Median

“!Mxl" (A
S

Slope of Moving Median

Relevant Part

— >l e

(only 23 sample points)

1
1
i
1
. Constant-Time

! Montgomery Multiplication
! Begins

1

1

)

1WA

‘l ll h
\ lll'l‘ o lllx

Figure 4: Signal that includes the end of one Montgomery multiplication, then the part relevant to our analysis, and
then the beginning of another Montgomery multiplication. The horizontal axis is time (from left to right) and the
vertical axis is the magnitude of the AM-demodulated signal.

Therefore, instead of finding instances of relevant
snippets by matching them against their reference sig-
nals from training, we use as a reference the signal that
corresponds to the most prominent change in the sig-
nal during Mongtomery multiplication, where the signal
abruptly changes from a period with a relatively low sig-
nal level to a period with a relatively high signal level.
We identify this point in the signal using a very effi-
cient algorithm. We first compute the signal’s moving
median (thick dashed black curve in Figure) to im-
prove resilience to noise. We then examine the deriva-
tive (slope) of this moving median (thick red curve in
Figure @) to identify peaks that significantly exceed its
statistically expected variation. In Figurdd] the thick red
arrow indicates such a peak, which corresponds to the
most prominent change in the Montgomery multiplica-
tion that precedes the relevant part of the signal. Be-
cause the implementation of the Montgomery multipli-
cation was designed to have almost no timing variation,
the signal snippet we actually need for analysis is at a
fixed time offset from the point of this match.

Because this method of identifying the relevant snip-
pets of the signal is based on the signal that corresponds
to the Montgomery multiplication that precedes each rel-
evant snippet, the same method can be used for extract-
ing relevant signal snippets for both fixed-window and
sliding-window exponentiation — in both cases the rele-
vant snippet is at the (same) fixed offset from the point at
which a prominent-enough peak is detected in the deriva-
tive of the signal’s moving median.

3.3 Recovering Exponent Bits in
the Fixed-window Implementation

In the fixed-window implementation, large-number mul-
tiplication is used for squaring (Line 7 in Figure [3) and

for updating the result after each window (Line 14). Thus
there are four control-flow possibilities for activity be-
tween Montgomery multiplications.

The first two control flow possibilities begin when the
Montgomery multiplication in line 7 completes. Both
control flow possibilities involve updating the window
value to include another bit from the exponent (lines §,
9, and 10), and at line 6 incrementing i and checking it
against w, the maximum size of the window. The first
control flow possibility is the more common one - the
window does not end and the execution proceeds to line
7 when another multiplication at line 7. We label this
control flow possibility S-S (from a squaring to a squar-
ing). The second control flow possibility occurs after the
last bit of the window is examined and added to wval,
and in that case the loop at line 6 is exited, the parame-
ters for the result update at line 14 are prepared, and the
Montgomery multiplication at line 14 begins. The pa-
rameter preparation in our code example would involve
computing the address of ct[wval] to create a pointer that
would be passed to the Montgomery multiplication as its
second multiplicand. In OpenSSL’s implementation the
ct is kept in a scattered format to minimize leakage of
wval through the cache side channel while computing the
Montgomery multiplication, so instead the value of wval
is used to gather the scattered parts of cz[wval] into a pre-
allocated array that is passed to Montgomery multiplica-
tion. Since this pre-allocated array is used for all result-
update multiplications, memory and cache behavior dur-
ing the Montgomery multiplication no longer depend on
wval. This means that in this second control-flow pos-
sibility involves significant activity to gather the parts of
the multiplicand and place them into the pre-allocated
array, and only then the Montgomery multiplication at
line 14 begins. We label this control flow possibility S-U
(from a squaring to an update).

USENIX Association

27th USENIX Security Symposium 591

The last two control flow possibilities occur after the
result update in line 14 completes its Montgomery mul-
tiplication. The loop condition at line 2 is checked, and
then one control flow possibility (third of the four) is that
the entire exponentiation loop exits. We label this con-
trol flow possibility U-X (from an update to an exit). The
last control-flow possibility, which occurs for all win-
dows except the last one, is that after line 2 we execute
line 3, enter the window-scanning loop at line 6, and be-
gin the next large-number Montgomery multiplication at
line 7. We label this control flow possibility U-S (from
an update to a squaring).

The sequence in which these four control flow pos-
sibilities are encountered in each window is always the
same: w — 1 occurrences of S-S, then one occurrence of
S-U, then either U-S or U-X, where U-X is only possible
for the last window of the exponent.

The first part of our analysis involves distinguishing
among these four control flow possibilities. The reason
for doing so is that noise bursts, interrupts, and activity
on other cores can temporarily interfere with our signal
and prevent detection of Montgomery multiplication. In
such cases, sole reliance on the known sequence of con-
trol flow possibilities would cause a “slip” between the
observed sequence and the expected one, causing us to
use incorrect reference signals to recover bits of the ex-
ponent and to put the recovered bits at incorrect positions
within the recovered exponent.

The classification into the four possibilities is much
more reliable than recovery of exponent’s bits. Com-
pared to the other three possibilities, S-U spends sig-
nificantly more time between Montgomery multiplica-
tions (because of the multiplicand-gathering activity), so
it can be recognized with high accuracy and we use it
to confirm that the exponentiation has just completed a
window. The U-X possibility is also highly recogniz-
able because, instead of executing Montgomery multi-
plication after it, it leads to executing code that converts
from Montgomery to standard large-number format, and
it serves to confirm that the entire exponentiation has
ended. The S-S and U-S snippets both involve only a
few instructions between Montgomery multiplications so
they are harder to tell apart, but our signal matching still
has a very high accuracy in distinguishing between them.

After individual snippets are matched to the four pos-
sibilities, that matching is used to find the most likely
mapping of the sequence of snippets onto the known
valid sequence. For example, if for w =5 we observe
S-U, U-S, S-S, S-S, S-S, S-U, all with high-confidence
matches, we know that one S-S is missing for that win-
dow. We then additionally use timing between these
snippets to determine the position of the missing S-S.
Even if that determination is erroneous, we will correctly
begin the matching for the next window after the S-U, so

a missing snippet is unlikely to cause any slips, but even
when it does cause a slip, such a slip is very likely to
be “contained” within one exponentiation window. Note
that a missing S-U or S-S snippet prevents our attack
from using its signal matching to recover the value of the
corresponding bit. A naive solution would be to assign
a random value to that bit (with a 50% error rate among
missing bits). However, for full RSA key recovery miss-
ing bits (erasures, i.e. the value of the bit is known to
be unknown) are much less problematic than errors (the
value of the bit is incorrect but not known a priori to be
incorrect), we label these missing bits as erasures.

Finally, for S-S and S-U snippets we perform addi-
tional analysis to recover the bit of the exponent that
snippet corresponds to. Recall that, in both S-S and S-U
control flow possibilities, in line 9 a new bit is read from
the exponent and is added to wval, and that bit is the one
we will recover from the snippet. For ease of discussion,
we will refer to the value of this bit as bval. To recover
bval, in training we obtain examples of these snippets for
each value of bval. To suppress the noise in our reference
snippets and thus make later matching more accurate,
these reference snippets are averages of many “identical”
examples from training. Clearly, there should be separate
references for bval = 0 (where only bval = 0 examples
are averaged) and for bval = 1 (where only bval =1 ex-
amples are averaged. However, bval is not the only value
that affects the signal in a systematic way — the signal
in this part of the computation is also affected by previ-
ous value of wval, loop counter i, etc. The problem is
that these variations occur in the same part of the signal
where variations due to bval occur, so averaging of these
different variants may result in attenuating the impact of
bval. We alleviate this problem by forming separate ref-
erences for different bit-positions within the window, e.g.
for window size w = 5 each value of bval would have 4
sets of S-S snippets and one set of S-U snippets, because
the first for bits in the window correspond to S-S snip-
pets and the last bit in the window to an S-U snippet. To
account for other value-dependent in the signal, in each
such set of snippets we cluster similar signals together
and use the centroid of each cluster as the reference sig-
nal. We use the K-Means clustering algorithm and the
distance metric used for clustering is Euclidean distance
(sum of squared differences among same-position sam-
ples in the two snippets). We found that having at least
6-10 clusters for each set of snippets discussed above im-
proves accuracy significantly. Beyond 6-10 clusters our
recovery of secret exponent’s bits improves only slightly
but requires more training examples to compensate for
having fewer examples per cluster (and thus less noise
suppression in the cluster’s centroid). Thus we use 10
clusters for each window-bit-position for each of the two
possible values of bval. Overall, the number of S-S ref-

592 27th USENIX Security Symposium

USENIX Association

>

Figure 5: Example signal references (cluster centroid)
for S-S snippets. Two references are shown for each
value of the exponent’s bit that corresponds to the snip-

pet.

erence snippets for bval recovery is 2% (w—1) % 10 —
two possible values of bval, w — 1 bit-positions, 10 ref-
erence signals (cluster centroids) for each, while for S-U
snippets we only have 20 reference snippets because S-
U only happens for the last bit-position in the window.
For commonly used window sizes this results in a rel-
atively small overall number of reference snippets, e.g.
for w = 5 there are only 100 reference snippets. To il-
lustrate the difference in the signals created by the value
of the exponent’s bit, Figure [5] shows two reference S-S
snippets (cluster centroids) for each value of the expo-
nent’s bit, with the most significant differences between
0-value and 1-value signals indicated by thick arrows.

Recall that, before attempting recovery of an unknown
bit of the secret exponent, we have already identified
which control-flow possibility (S-S or S-U) the snippet
under consideration belongs to, and for S-S which bit-
position it belongs to, so there are 20 reference snippets
that each snippet-under-consideration is compared to (10
clusters for bval = 0 and 10 clusters for bval = 1). Thus
the final step of our analysis involves finding the clos-
est match (using Euclidean distance as a metric) among
these 20 reference snippets and taking the bval associ-
ated with that reference snippet.

3.4 Recovering Exponent Bits in
the Sliding-window Implementation

The sliding-window implementation of large-integer ex-
ponentiation (Figure [2) has three sites where Mont-
gomery multiplication is called: the squaring within a
window at line 26, which we label S, the update of the
result at line 29, which we label U, and the squaring for a
zero-valued window at line 7, which we label Z. The con-
trol flow possibilities between these include going from
a squaring to another squaring (which we label as S-S).
This transition is very brief (it only involves staying in
the loop at line 25). The other transitions are S-U, which

consumes more time because it performs the ct[wval]
computation; U-Z, which involves executing line 31, line
3, line 4 (where a bit of the exponent is examined), and fi-
nally entering Montgomery multiplication at line 7; U-S,
which involves executing line 31, line 3, line 4, lines 11
and 12, and the entire window-scanning loop at lines 14-
23, then line 25 and finally entering Montgomery multi-
plication at line 26; Z-Z where after line 7 the execution
proceeds to line 8, line 9, line 3, line 4, and line 7 again;
Z-S where after line 7 the execution proceeds to lines
8, 9, 3, 4, and then to lines 11 and 12, the loop at line
14-23, then line 25 and finally line 26; U-X where after
the Montgomery multiplication at line 29 the execution
proceeds to line 31 and then exits the loop at line 3; and
finally S-X, where after Montgomery multiplication at
line 7 the execution proceeds to lines 8 and 9 and then
exits the loop at line 3.

Just like in fixed-window implementations, our recov-
ery of the secret exponent begins with determining which
snippet belongs to which of these control-flow possibili-
ties. While in Section[3.3|this was needed only to correct
for missing snippets, in the sliding-window implemen-
tation the window size varies depending on which bit-
values are encountered in the exponent, so distinguishing
among the control-flow possibilities is crucial for cor-
rectly assigning recovered bits to bit-positions in the ex-
ponent even if no snippets are missing. Furthermore,
many of the exponent’s bits can be recovered purely
based on the sequence of these control-flow possibilities.

Our overall approach for distinguishing among control
flow possibilities is similar to that in Section except
that here there are more control-flow possibilities, and
the U-S and Z-S coarse-grained possibilities each have
multiple control flow possibilities within the snippet: for
each bit considered for the window, line 19 determines
whether or not to execute lines 20 and 21. However, at
the point in the sequence where U-S can occur, the only
alternative is U-Z, which is much shorter and thus they
are easy to tell apart. Similarly, the only alternative to
Z-S is the much shorter Z-Z, so they are also easy to tell
apart.

By classifying snippets according to which control-
flow possibility they belong (where U-S and U-Z are
each treated as one possibility), and by knowing the rules
the sequence of these must follow, we can recover from
missing snippets and, more importantly, use rules similar
to those in [[10] to recover many of the bits in the secret
exponent. However, in contrast to work in [[10] that could
only distinguish between a squaring (line 7 or line 26, i.e.
S or Z in our sequence notation) and an update (line 29, U
in our sequence notation) using memory access patterns
within each Montgomery multiplication (which imple-
ments both squaring and updates), our method uses the
signal snippets between these Montgomery multiplica-

USENIX Association

27th USENIX Security Symposium 593

tions to recover more detailed information, e.g., for each
squaring our recovered sequence indicates whether it is
an S or a Z, and this simplifies the rules for recovery of
exponent’s bits and allows us to extract more of them.
Specifically, after a U-S or Z-S, which compute the win-
dow value wval, the number of bits in the window can
be obtained by counting the S-S occurrences that follow
before an S-U is encountered. For example, consider the
sequence U-S, S-S, S-S, S-U, U-Z, Z-Z, Z-Z, Z-S. The
first U-S indicates that a new window has been identified
and a squaring for one of its bits is executed. Then the
two occurrences of S-S indicate two additional squaring
for this window, and S-U indicates that only these three
squaring are executed, so the window has only 3 bits. Be-
cause the window begins and ends with 1-valued bits, it
is trivial to deduce the values of two of these 3 bits. If we
also know that wmax = 5, the fact that the window only
has 3 bits indicates that the two bits after this window
are both 0-valued (because a 1-valued bit would have ex-
panded the window to include it). Then, after S-U, we
observe U-Z, which indicates that the bit after the win-
dow is O-valued (which we have already deduced), then
two occurrences of Z-Z indicate two more 0-valued bits
(one of which we have already deduced), and finally Z-
S indicates that a new non-zero window begins, i.e. the
next bit is 1. Overall, out of the seven bits examined dur-
ing this sequence, six were recovered solely based on the
sequence. Note that two of the bits (the two zeroes after
the window) were redundantly recovered, and this redun-
dancy helps us correct mistakes such as missing snippets
or miss-categorized snippets.

In general, this sequence-based analysis recovers all
zeroes between windows and two bits from each win-
dow. In our experiments, when using wmax = 5 this
analysis alone on average recovers 68% of the secret ex-
ponent’s bits, and with using wmax = 6, another com-
monly used value for wmax, this analysis alone on aver-
age recovers 55% of the exponent’s bits. These recovery
rates are somewhat higher than what square-update se-
quences alone enable [[10], but recall that in our approach
sequence recovery is only the preparation for our analy-
sis of exponent-bit-dependent variation within individual
signal snippets.

Since the only bits not already recovered are the “in-
ner” (not the first and not the last) bits of each window,
and since U-S and Z-S snippets are the only ones that ex-
amine these inner bits, our further analysis only focuses
on these. To simplify discussion, we will use U-S to de-
scribe our analysis because the analysis for Z-S snippets
is virtually identical.

Unlike fixed-window implementations, where the bits
of the exponent are individually examined in separate
snippets, in sliding-window implementations a single
U-S or Z-S snippet contains the activity (line 4) for

examining the first bit of the window and the execu-
tion of the entire loop (lines 14-23) that constructs the
wval by examining the next wmax — 1. Since these
bits are examined in rapid succession without interven-
ing highly-recognizable Montgomery multiplication ac-
tivity, it would be difficult to further divide the snippet’s
signal into pieces that each correspond to consideration
of only one bit. Instead, we note that wmax is rela-
tively small (typically 5 or 6), and that there are only
2Wmax possibilities for the control flow and most of the
operands in the entire window-scanning loop. Therefore,
in training we form separate reference snippets for each
of these possibilities, and then during the attack we com-
pare the signal snippet under consideration to each of the
references, identify the best-matching reference snippet
(smallest Euclidean distance), and use the bits that corre-
spond to that reference as the recovered bit values.

3.5 Full Recovery of RSA Private Key Us-
ing Recovered Exponent Bits

Our RSA key recovery algorithm is a variant of the
algorithm described by Henecka et al. [27], which is
based on Heninger and Shacham’s branch-and-prune al-
gorithm [28]]. Like Bernstein et al. [10], we recover from
the side channel signal only the bits of the private expo-
nents d;, and d,, and the recovery of the full private key
relies on exploiting the numerical relationships (Equa-
tions (1) in Bernstein et al. [10]) between these private
exponents (d, and d,), the public modulus N and expo-
nent e, and p and ¢, the private factors of N:

edp =1+ky(p—1) mod 2!
edg = 1+kq(q—1) mod 2!
pq = N mod 2!

where k, and k, are positive integers smaller than
the public exponent e and satisfy (k, —1)(k, — 1) =
kpkyN mod e. The public exponent practically never ex-
ceeds 32 bits [28] and in most cases e = 65537, so a key
recovery algorithm needs to try at most e pairs of k, k.

‘We could not simply apply Bernstein’s algorithm [10]
to the exponents recovered by our signal analysis be-
cause, like the original branch-and-prune algorithm, such
recovery requires certain knowledge of the bit values at
some fraction of bit-positions in d,, and d,;, while the re-
maining bits are unknown but known to be unknown, i.e.
they are erasures rather than errors. Such branch-and-
prune search has been shown to be efficient when up to
50% of the bit-positions (chosen uniformly at random) in
dp and d,; are erasures, while its running time grows ex-
ponentially when the erasures significantly exceed 50%
of the bit positions.

Henecka’s algorithm [27] can be applied with the
above pruning equations to recover the private key when

594 27th USENIX Security Symposium

USENIX Association

some of the bits are in error. However, its pruning is
based on a key assumption that errors are uniformly dis-
tributed, and it does not explicitly consider erasures. Re-
call, however, that for some of the bit positions our anal-
ysis cannot identify the relevant signal snippet for match-
ing against training signals (see Section [3.2)), which re-
sults in an erasure. A naive approach for handling era-
sures would be to randomly assign a bit value for each
erasure (resulting in a 50% error rate among erasures)
and then apply Henecka’s algorithm. Unfortunately, the
erasures during our recovery are a product of distur-
bances in the signal that are very large in magnitude, and
such a disturbance also tends to last long enough to af-
fect multiple bits. With random values assigned to era-
sures, this produces 50%-error-rate bursts that are highly
unlikely to be produced by uniformly distributed errors,
causing Henecka’s algorithm to either prune the correct
partial candidate key or become inefficient (depending
on the choice of the € parameter).

Instead, we modify Henecka’s algorithm to handle
erasures by branching at a bit position when it encoun-
ters an erasure, but ignoring that bit position for the pur-
poses of making a pruning decision. We further extend
Henecka’s algorithm to not do a “hard” pruning of a can-
didate key when its error count is too high. Instead, we
save such a candidate key so that, if no candidate keys re-
main but the search for the correct private key is not com-
pleted, we can “un-prune” the lowest-error-count candi-
date keys that were previously pruned due to having too
high of an error count. This is similar to adjusting the
value of € in Henecka’s algorithm and retrying, except
that the work of previous tries is not repeated, and this
low cost of relaxing the error tolerance allows us to start
with a low error tolerance (large € in Henecka et al.) and
adjust it gradually until the solution is found.

We further modify Henecka’s algorithm to, rather than
expand a partial key by multiple bits (parameter ¢ in He-
necka et al.) at a time, expand by one bit at a time and,
among the newly created partial keys, only further ex-
pand the lowest-recent error-count ones until the desired
expansion count (¢) is reached. In Henecka’s algorithm,
full exansion by 7 bits at a time creates 2 new candi-
date keys, while our approach discovers the same set of #-
times-expanded non-pruned candidates without perform-
ing all # expansions on those candidates that encounter
too many errors even after fewer than ¢ single-bit expan-
sions. For a constant ¢, this reduces the number of partial
keys that are examined by a constant factor, but when the
actual error rate is low this constant factor is close to 2.

Overall, our actual implementation of this modified al-
gorithm is very efficient - it considers (expands by one
bit) about 300,000 partial keys per second using a single
core on recent mobile hardware (4th generation Surface
Pro with a Core i7 processor), and for low actual error

1000000
— F OIS

Erasures

100000 eeecee 50% Mix _.."

10000

1000
0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Figure 6: Single-bit expansion steps needed to recon-
struct the private RSA key (vertical axis, note the log-
arithmic scale) as a function of the rate at which errors
and/or erasures are injected (horizontal axis).

rates typically finds a solution after only a few thousand
partial keys are considered. We evaluate its ability to
reconstruct private RSA keys using d, and d, bits that
contain errors and/or erasures by taking 1,000 RSA keys,
introducing random errors, random erasures, and a half-
and-half mix of errors and erasures, at different error/era-
sure rates, and counting how many partial keys had to be
considered (expanded by a bit) before the correct private
key was reconstructed. The median number of steps for
each error/erasure rate is shown in Figure 6| We only
show results for error/erasure rates up to 10% because
those are the most relevant to our actual signal-based re-
covery of the exponent’s bits.

We observe that our implementation of reconstruction
quickly becomes inefficient when only errors are present
and the error rate approaches 7%, which agrees with the
theoretical results of Henecka et al. — since d), and d,; are
used, the m factor in Henecka et al. is 2, and the upper
bound for efficient reconstruction is at 8.4% error rate. In
contrast, when only erasures are present, our implemen-
tation of reconstruction remains very efficient even as the
erasure rate exceeds 10%, which agrees with Bernstein et
al.’s finding that reconstruction should be efficient with
up to 50% erasure rates. Finally, when equal numbers of
errors and erasures are injected, the efficiency for each
injection rate is close to (only slightly worse than) the ef-
ficiency for error-only injection at half that rate, i.e. with
a mix of errors and erasures, the efficiency of reconstruc-
tion is largely governed by the errors.

Figure [/| shows the percentage of experiments in
which the correct RSA key was recovered in fewer than
5,000,000 steps (about 17 seconds on the Surface 4
tablet). When only errors are present, < 90% of the re-
constructions take fewer than 5,000,000 steps until the
error rate exceeds 5.4%, at which point the percent-
age of under-five-million-steps reconstructions rapidly

USENIX Association

27th USENIX Security Symposium 595

100%
90% e,
80%
70%
60%
50%
40%
28‘5’ eeeeee 50% Mix
(]
10%
0%

— F [TOI'S

Erasures

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Figure 7: Percentage of keys recovered in fewer than
5,000,000 single-bit expansion steps (vertical axis) as a
function of the rate at which errors and/or erasures are
injected (horizontal axis).

declines and drops below 10% at the 7.9% error rate.
In contrast, all erasure-only reconstructions are under
5,000,000 steps even at the 10% erasure rate. Finally,
when erasures and errors are both present in equal mea-
sure, the percentage of under-5,000,000-step reconstruc-
tions remains above 90% until the injection rate reaches
9.8% (4.9% of the bits are in error and another 4.9% are
erased).

4 Evaluation

In this section we describe our measurement setup and
obtained results for recovering keys from blinded RSA
encryption runs on three different devices.

4.1 Experimental Setup

We run the OpenSSL RSA application on Android smart
phones Samsung Galaxy Centura SCH-S738C [40] and
Alcatel Ideal [4], and on an embedded device (A13-
OLinuXino board [37])) . The Alcatel Ideal cellphone
has quad-core 1.1 GHz Qualcomm Snapdragon proces-
sor with Android OS(version 6) and the Samsung phone
has a single-core 800 MHz Qualcomm MSM7625A
Chipset with Android OS(version 5). The A13- OLin-
uXino board is a single-board computer that has an in
order, 2-issue Cortex A8 ARM processor [5] and runs
Debian Linux operating system.

In our experimental setup, we receive signals using
small magnetic probe. We place the probe close to the
monitored system as shown in Figure[§] The signals col-
lected by the probe are recorded with Keysight N9020A
MXA spectrum analyzer [31]. Our decision to use spec-
trum analyzer was mainly driven by its existing features
such as built-in support for automating measurements,

saving and analyzing measured results, visualizing the
signals when debugging code, etc. We have observed
very similar signals when using less expensive equip-
ment such as Ettus USRP B200-mini receiver [18]]. The
analysis was implemented in MATLAB and on a per-
sonal computer runs in under one minute per decryption
instance (i.e. per recovered 1024-bit exponent).

4.2 Experimental Results

4.3 Results for OpenSSL’s Constant-Time
Fixed-Window Implementation

Our first set of experiments evaluates the attack’s abil-
ity to recover bits of the 1024-bit secret exponent d,
used during RSA-2048 decryption. OpenSSL uses a
fixed window size w = 5 for exponentiation of this size.
Note that RSA decryption involves another exponentia-
tion, with d,, and uses the Chinese Remainder Theorem
to combine their results. However, the two exponentia-
tions use exactly the same code and d, and d,, are of the
same size, so results for recovering d, are statistically the
same to those shown here for recovering d,,.

For each device, our training uses signals that corre-
spond to 15 decryption instances, one for each of 15
randomly generated but known keys, and with cipher-
text that is randomly generated for decryption. Note that
these 15 decryptions provide around 12 thousand exam-
ples of S-S signal snippets, 3 thousand S-U, 3 thousand
U-S, and 15 U-X snippets. This is more than enough ex-
amples of each control flow possibility to distinguish be-
tween these control flow possibilities accurately. More
importantly, this provides on average 1,500 snippet ex-
amples for each of the 100 (2 % 5 xw) clusters whose cen-
troids are used as reference snippets when recovering the
bits of the unknown secret exponents. Note that using
larger RSA keys proportionally increases the number of
snippets produced by each decryption, while w changes
little or not at all. Thus for larger RSA keys we expect
that even fewer decryptions would be needed for train-
ing.

After training we perform the actual attack. We ran-
domly generate 135 RSA-2048 keys, and for each of
these keys we record, demodulate, and upsample (see
Section [3.1)) the signal that corresponds to only one de-
cryption with that key, using a ciphertext that is ran-
domly generated for each decryption. Next, the sig-
nal that corresponds to each decryption is processed to
extract the relevant snippets from it (see Section [3.2).
Then, as described in Section @], each of these snip-
pets is matched against reference snippets (from train-
ing) to identify which of the control-flow possibilities
each snippet belongs to and, for S-S and S-U snippets,
which bit-position in the exponent (and the window) the

596 27th USENIX Security Symposium

USENIX Association

Figure 8: The measurement setup for each of the three devices (shown in the right-to-left order): Samsung Galaxy
Centura SCH-S738C smart phone, Alcatel Ideal smart phone, and the A13-OLinuXino board.

snippet corresponds to. Finally, S-S and S-U snippets are
matched against the 20 clusters that correspond to its po-
sition in the window to recover the value of the bit at that
position in the secret exponent.

The metric we use for the success of this attack is the
success rate for recovery of exponent’s bits, i.e. the frac-
tion of the exponent’s bits for which the recovery pro-
duces the value that the secret exponent at that position
actually had. To compute this success rate, we compare
the recovered exponents to the actual exponents d,, and
d, that were used, counting the bit positions at which the
two agree and, at the end, dividing that count with the
total number of bits in the two exponents.

100% 9
99% ?
98% © Max
97% © Median
96% © Min
95%
Samsung Galaxy Alcatel Ideal OLinuXino
Centura Phone Phone Board

Figure 9: Success rate for recovery of secret exponent
dp’s bits during only one instance of RSA-2048 decryp-
tion that uses that exponent. For each device, the maxi-
mum, median, and minimum success rate among decryp-
tion instances (each with a different randomly generated
key) is shown.

The maximum, median, and minimum success rate
for each of the three targeted devices is shown in Fig-
ure We observe that the success rate of the attack is
extremely high - among all decryptions on all three de-
vices the lowest recovery rate is 95.7% of the bits. For
the OLinuXino board, most decryption instances (>85%
of them) had all bits of the exponent recovered correctly,
except for the most significant 4 bits. These 4 bits are
processed before entering the code in Figure[3]to leave a
whole number of 5-bit windows for that code, so we do
not attempt to recover them and treat them as erasures.
Among the OLinuXino decryption instances that had any
other reconstruction errors, nearly all had only one addi-
tional incorrectly recovered bit (error, not erasure), and a
few had two.

The results for the Samsung phone were slightly worse
— in addition to the 4 most significant bits, several de-
cryption instances had one additional bit that was left
unknown (erasure) because of an interrupt that occurs be-
tween the derivative-of-moving-median peak and the end
of the snippet that follows it, which either obliterates the
peak or prevents the snippet from correctly being cate-
gorized according to its control flow. In addition to these
unknown (but known-to-be-unknown) bits, for the Sam-
sung phone the reconstruction also produced between 0
and 4 incorrectly recovered (error) bits.

Finally, for the Alcatel Ideal phone most instances of
the encryption had between 13 and 16 unknown bits in
each of the two exponents, mostly because activity on
the other three cores interferes with the activity on the
core doing the RSA decryption), and a similar number of
incorrectly recovered bits (errors).

USENIX Association

27th USENIX Security Symposium 597

100.0%

o5 -9 $ ¢ 8 8

99.0% ¢ Max

@ Median
98.5% o Min
98.0%

H1 H2 H3 H4 HS5 #H6 #7 #8
(Self)

Figure 10: Success rate for recovery of secret exponent
dp’s bits during only one instance of RSA-2048 decryp-
tion that uses that exponent, when training on OLin-
uXino board #1 and then using that training data for
unknown exponent recovery on the same board and on
seven other boards. For each device, the maximum, me-
dian, and minimum success rate among decryption in-
stances (each with a different randomly generated key)
is shown.

To examine how the results would be affected when
training using signals collected on one device and then
recovering exponent bits using signals obtained from an-
other device of the same kind, we use eight OLinuXino
board which we label #1 through #8. Our training
uses signals obtained only from board #1, and then the
unknown keys are used on each of the eight boards and
subjected to analysis using the same training data (from
board #1). The results of this experiment are shown in
Figure [I0] where the leftmost data points correspond to
training and recovery on the same device, while the re-
maining seven sets of data points correspond to training
on one board and recovery on another.

These results indicate that training on a different de-
vice of the same kind does not substantially affect the
accuracy of recovery.

Finally, for each RSA decryption instance, the recov-
ered exponent bits, using both the recovered d,, and the
recovered d,, were supplied to our implementation of the
full-key reconstruction algorithm. For each instance, the
correct full RSA private key was reconstructed within
one second on the Core i7-based Surface Pro 4 tablet,
including the time needed to find the k, and k, coeffi-
cients that were not known a priori. This is an expected
result, given that even the worst bit recovery rates (for
the Alcatel phone) correspond to a an error rate of about
1.5%, combined with an erasure rate of typically 1.5%
but sometimes as high as 3% (depending on how much
system activity occurs while RSA encryption is execu-

The OLinuXino boards are much less expensive than the phones,
so we could easily obtain a number of OLinuXino boards

100% 053
90%
80% © Max
© Median
70%
© Min
60%

IR I

S-M-Z Sequence Overall

Figure 11: Success rate for recovery of secret exponent
dp’s bits during only one instance of RSA-2048 decryp-
tion that uses that exponent for sliding-window exponen-
tiation. The maximum, median, and minimum success
rate among decryption instances (each with a different
randomly generated key) is shown for recovery that only
uses the snippet-type sequence (S-M-Z Sequence), and
for recovery that also recovers window bits from U-S and
Z-S snippets (Overall).

tion on the phone), which is well withing the range for
which our full-key reconstruction is extremely efficient.

4.4 Results for the Sliding-Window
Implementation

To improve our understanding of the implications for
this new attack approach, we also apply it to RSA-
2048 whose implementation uses OpenSSL’s sliding-
window exponentiation — recall that this was the de-
fault implementation used in OpenSSL until it switched
to a fixed-window implementation in response to at-
tacks that exploit sliding-window’s exponent-dependent
square-multiply sequence.

In these experiments we use 160 MHz of bandwidth
and target the OLinuXino board. Recall that in a sliding-
window implementation our method can categorize the
snippets according to their beginning/ending point to
recover the sequence of zero-squaring (Z), window-
squaring (S), and result update (M) occurrences. The
fraction of the exponent’s bits recovered by this se-
quence reconstruction (shown as “S-M-Z Sequence” in
Figure [TI) is in our experiments between 51.2% and
57.7% with a median of 54.5%. This sequence-based re-
covery has produces no errors in most cases (keys), and
among the few encryptions that had any errors, none had
more than one.

In our attack approach, after this sequence-based re-
construction, the U-S and Z-S snippets are subjected to
further analysis to recover the remaining bits of the win-
dow computed in each U-S and Z-S snippet. At the end

598 27th USENIX Security Symposium

USENIX Association

of this analysis, the fraction of the exponent’s bits that are
correctly recovered (“Overall” in Figure is between
97.7% and 99.6%, with a median of 98.7%.

This rate of recovery for exponent bits provides for
very rapid reconstruction of the full RSA key. How-
ever, we note that it is somewhat inferior to our results on
fixed-window exponentiation on the same device (OLin-
uXino board), in spite of using more bandwidth for at-
tacks on sliding-window (160MHz bandwidth) than on
fixed-window (40MHz bandwidth) implementation. The
primary reason for this is that in the fixed-window im-
plementation each analyzed snippet corresponds to ex-
amining only one bit of the exponent, whereas in the
sliding-window implementation wmax = 6 bits of the
exponent are examined in a single U-S or Z-S snippet,
while the exponent-dependent variation in the snippet is
not much larger. Since sliding-window recovery tries to
extract several times more information from about the
same amount of signal change, its recovery is more af-
fected by noise and thus slightly less accurate.

S Mitigation

We focus our mitigation efforts on the fixed-window
implementation, which is the implementation of choice
in the current version of OpenSSL, and which already
mitigates the problem of exponent-dependent square-
multiply sequences and timing variation. We iden-
tify three key enablers for this attack approach, which
roughly correspond to discussion in Sections
and Successful mitigation requires removing at least
one of these enablers, so we now discuss each of the at-
tack enablers along with potential mitigation approaches
focused on that enabler.

The first enabler of the specific attack demonstrated
in this paper is the existence of computational-activity-
modulated EM signals around the processor’s clock fre-
quency, and the attacker’s ability to obtain these signals
with sufficient bandwidth and signal-to-noise ratio. Po-
tential mitigation thus include circuit-level approaches
that reduce the effect the differences in computation have
the signal, additional shielding that attenuates these sig-
nals to reduce their signal-to-noise ratio outside the de-
vice, deliberate creation of RF noise and/or interference
that also reduces the signal-to-noise ratio, etc. We do not
focus on these mitigation because all of them increase the
device’s overall cost, weight, and/or power consumption,
all of them are difficult to apply to devices that are al-
ready in use, and all of them may not provide protection
against attacks that use this attack approach but through
a different physical side channel (e.g. power).

The second enabler of our attack approach is the at-
tacker’s ability to precisely locate, in the overall signal
during an exponentiation operation, those brief snippets

of signal that correspond to examining the bits of the ex-
ponent and constructing the value of the window. A sim-
ple mitigation approach would thus insert random addi-
tional amounts of computation before, during, and/or af-
ter window computation. However, additional computa-
tion that has significant variation in duration would also
have a significant mean of that duration, i.e. it would
slow down the window computation. Furthermore, it
is possible (and indeed likely) that our attack can be
adapted to identify and ignore the signal that corresponds
to this additional activity.

The final (third) enabler of our attack approach is
the attacker’s ability to distinguish between the signals
whose computation has the same control flow but uses
different values for a bit in the exponent. In this regard,
the attack benefits significantly from 1) the limited space
of possibilities for value returned by BN_is_bit_set —
there are only two possibilities: 0 or 1, and from 2) the
fact that the computation that considers each such bit is
surrounded by computation that operates on highly pre-
dictable values — this causes any signal variation caused
by the return value of BN_is_bit_set to stand out in a
signal that otherwise exhibits very little variation.

Based on these observations, our mitigation relies on
obtaining all the bits that belong to one window at once,
rather than extracting the bits one at a time. We accom-
plish this by using the bn_get_bits function (defined in
bn_exp. c in OpenSSL’s source code), which uses shifts
and masking to extract and return a BN_ULONG-sized
group of bits aligned to the requested bit-position — in
our case, the LSB of the window. The BN_ULONG is
typically 32 or 64 bits in size, so there are billions of pos-
sibilities for the value it returns, while the total execution
time of bn_get_bits is only slightly more than the time
that was needed to append a single bit to the window (call
to BN_is_bit_set shifting the wval, and or-ing to up-
date wval with the new bit). For the attacker, this means
that there are now billions of possibilities for the value to
be extracted from the signal, while the number of signal
samples available for this recovery is similar to what was
originally used for making a binary (single-bit) decision.
Intuitively, the signal still contains the same amount of
information as the signal from which one bit used to be
recovered, but the attacker must now attempt to extract
tens of bits from that signal.

This mitigation results in a slight improvement in ex-
ecution time of the exponentiation and, as shown in Fig-
ure with the mitigation the recovery rate for the ex-
ponent’s bits is no better than randomly guessing each
bit (50% recovery rate). In fact, the recovery rate with
the mitigation is lower than 50% because, as in our
pre-mitigation results, the bits whose signal snippets
could not be located are counted as incorrectly recov-
ered. However, these bits can be treated as erasures, i.e.

USENIX Association

27th USENIX Security Symposium 599

65%

¢ Max
60% © Median
¢ Min
55%
50%
45%
40%
Samsung Galaxy Alcatel Ideal OLinuXino
Centura Phone Phone Board

Figure 12: Success rate for recovery of secret exponent
dp’s bits after the initial implementation of our window
value randomization mitigation is applied.

for each such bit the attacker knows that the value of the
bit is unknown, as opposed to a bits whose value is incor-
rect but the attacker has no a-priori knowledge of that, so
our recovery rate can be trivially improved by randomly
guessing (with 50% accuracy) the value of each erasure,
rather than having 0% accuracy on them. With this, the
post-mitigation recovery rate indeed becomes centered
around 50%, i.e. equivalent to random guessing for all
of the bits.

This mitigation has been submitted to OpenSSL and
was merged into its master source code branch on May
20th, prior to the publication of this paper.

6 Conclusions

This paper presents the first side channel attack approach
that, without relying on the cache organization and/or
timing, retrieves the secret exponent from a single de-
cryption on arbitrary ciphertext in a modern (current ver-
sion of OpenSSL) fixed-window constant-time imple-
mentation of RSA. Specifically, the attack recovers the
exponent’s bits during modular exponentiation from ana-
log signals that are unintentionally produced by the pro-
cessor as it executes the constant-time code that con-
structs the value of each “window” in the exponent,
rather than the signals that correspond to squaring/multi-
plication operations and/or cache behavior during multi-
plicand table lookup operations. The approach is demon-
strated using electromagnetic (EM) emanations on two
mobile phones and an embedded system, and after only
one decryption in a fixed-window RSA implementation
it recovers enough bits of the secret exponents to enable
very efficient (within seconds) reconstruction of the full
private RSA key.

Since the value of the ciphertext is irrelevant to our at-
tack, the attack succeeds even when the ciphertext is un-
known and/or when message randomization (blinding) is

used. Our evaluation uses signals obtained by demodu-
lating the signal from a relatively narrow band (40 MHz)
around the processor’s clock frequency (around 1GHz),
which is within the capabilities of compact sub-$1,000
software-defined radio (SDR) receivers.

Finally, we propose a mitigation where the bits of the
exponent are only obtained from an exponent in integer-
sized groups (tens of bits) rather than obtaining them one
bit at a time. This mitigation is effective because it forces
the attacker to attempt recovery of tens of bits from a sin-
gle brief snippet of signal, rather than having a separate
signal snippet for each individual bit. This mitigation
has been submitted to OpenSSL and was merged into its
master source code branch prior to the publication of this

paper.

7 Acknowledgments

We thank the anonymous reviewers for their very help-
ful comments and recommendations on revising this pa-
per, and the developers of OpenSSL for helping us merge
our mitigation into OpenSSL’s source code repository on
GitHub. This work has been supported, in part, by NSF
grant 1563991and DARPA LADS contract FA8650-16-
C-7620. The views and findings in this paper are those
of the authors and do not necessarily reflect the views of
NSF and DARPA.

References

[11 Acu¢MEZ, O., Kog, c. K., AND SEIFERT, J.-P. On the power
of simple branch prediction analysis. In Proceedings of the 2nd
ACM Symposium on Information, Computer and Communica-
tions security (ASIACCS) (Mar. 2007), ACM Press, pp. 312-320.

[2] AGRAWAL, D., ARCHAMBEULT, B., RAO, J. R., AND RO-
HATGI, P. The EM side-channel(s). In Proceedings of Crypto-
graphic Hardware and Embedded Systems - CHES 2002 (2002),
pp. 29-45.

[3] AGRAWAL, D., ARCHAMBEULT, B., RAO, J. R., AND RO-
HATGI, P. The EM side-channel(s): attacks and assessment
methodologies. In http://www.research.ibm.com/intsec/emf-
paper.ps (2002).

[4] ALCATEL. Alcatel Ideal / Streak Specifications. http://
www . phonescoop. com/phones/phone . php?p=5097, Feb 24,
2016.

[S] ARM. ARM Cortex A8 Processor Manual. https://www.arm.
com/products/processors/cortex-a/cortex-a8.php,
accessed April 3, 2016.

[6] BACKES, M., DURMUTH, M., GERLING, S., PINKAL, M., AND
SPORLEDER, C. Acoustic side-channel attacks on printers. In
Proceedings of the USENIX Security Symposium (2010).

[7] BALASCH, J., GIERLICHS, B., REPARAZ, O., AND VER-
BAUWHEDE, 1. DPA, Bitslicing and Masking at 1 GHz. In Cryp-
tographic Hardware and Embedded Systems (CHES) (2015),
T. Giineysu and H. Handschuh, Eds., Springer Berlin Heidelberg,
pp- 599-619.

600 27th USENIX Security Symposium

USENIX Association

http://www.phonescoop.com/phones/phone.php?p=5097
http://www.phonescoop.com/phones/phone.php?p=5097
https://www.arm.com/products/processors/cortex-a/cortex-a8.php
https://www.arm.com/products/processors/cortex-a/cortex-a8.php

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

BANGERTER, E., GULLASCH, D., AND KRENN, S. Cache
games - bringing access-based cache attacks on AES to prac-
tice. In Proceedings of IEEE Symposium on Security and Privacy
(2011).

BAYRAK, A. G., REGAZZONI, F., BRISK, P., STANDAERT, F.-
X., AND IENNE, P. A first step towards automatic application
of power analysis countermeasures. In Proceedings of the 48th
Design Automation Conference (DAC) (2011).

BERNSTEIN, D. J., BREITNER, J., GENKIN, D., BRUIN-
DERINK, L. G., HENINGER, N., LANGE, T., VAN VREDEN-
DAAL, C., AND YAROM, Y. Sliding right into disaster: Left-to-
right sliding windows leak. Conference on Cryptographic Hard-
ware and Embedded Systems (CHES) 2017, 2017.

BIHAM, E., AND SHAMIR, A. Differntial Cryptanalysis of the
Data Encryption Standard. In Proceedings of the 17th Annual
International Cryptology Conference (1997).

BONEH, D., AND BRUMLEY, D. Remote Timing Attacks are
Practical. In Proceedings of the USENIX Security Symposium
(2003).

BROUCHIER, J., KEAN, T., MARSH, C., AND NACCACHE, D.
Temperature attacks. Security Privacy, IEEE 7, 2 (March 2009),
79-82.

CALLAN, R., ZAJIC, A., AND PRVULOVIC, M. A Practical
Methodology for Measuring the Side-Channel Signal Available
to the Attacker for Instruction-Level Events. In Proceedings
of the 47th International Symposium on Microarchitecture (MI-
CRO) (2014).

CHARI, S., JUTLA, C. S., RAO, J. R., AND ROHATGI, P. To-
wards sound countermeasures to counteract power-analysis at-
tacks. In Proceedings of CRYPTO’99, Springer, Lecture Notes
in computer science (1999), pp. 398-412.

CHARI, S., RAO, J. R., AND ROHATGI, P. Template attacks. In
Proceedings of Cryptographic Hardware and Embedded Systems
- CHES 2002 (2002), pp. 13-28.

COPPENS, B., VERBAUWHEDE, 1., BOSSCHERE, K. D., AND
SUTTER, B. D. Practical Mitigations for Timing-Based Side-
Channel Attacks on Modern x86 Processors. In Proceedings
of the 30th IEEE Symposium on Security and Privacy (2009),
pp. 45-60.

ETTUS. USRP-B200mini. https://www.ettus.com/
product/details/USRP-B200mini-1i, accessed February 4,
2018.

GANDOLFI, K., MOURTEL, C., AND OLIVIER, F. Electromag-
netic analysis: Concrete results. In Proceedings of the Third
International Workshop on Cryptographic Hardware and Em-
bedded Systems (London, UK, UK, 2001), CHES 01, Springer-
Verlag, pp. 251-261.

GENKIN, D., PACHMANOV, L., PIPMAN, 1., SHAMIR, A., AND
TROMER, E. Physical key extraction attacks on pcs. Commun.
ACM 59, 6 (May 2016), 70-79.

GENKIN, D., PACHMANOV, L., PIPMAN, 1., AND TROMER, E.
Stealing keys from PCs using a radio: cheap electromagnetic at-
tacks on windowed exponentiation. In Conference on Crypto-
graphic Hardware and Embedded Systems (CHES) (2015).

GENKIN, D., PACHMANOV, L., PIPMAN, 1., TROMER, E., AND
YAROM, Y. ECDSA Key Extraction from Mobile Devices via
Nonintrusive Physical Side Channels. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Se-
curity (2016), CCS *16, ACM, pp. 1626-1638.

GENKIN, D., PIPMAN, 1., AND TROMER, E. Get your hands
off my laptop: physical side-channel key-extraction attacks on
PCs. In Conference on Cryptographic Hardware and Embedded
Systems (CHES) (2014).

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

GENKIN, D., SHAMIR, A., AND TROMER, E. RSA key extrac-
tion via low-bandwidth acoustic cryptanalysis. In International
Cryptology Conference (CRYPTO) (2014).

GIRAUD, C. DFA on AES. In Advanced Encryption Standard -
AES, 4th International Conference, AES 2004 (2003), Springer,
pp. 27-41.

GOUBIN, L., AND PATARIN, J. DES and Differential power
analysis (the “duplication” method). In Proceedings of Crypto-
graphic Hardware and Embedded Systems - CHES 1999 (1999),
pp. 158-172.

HENECKA, W., MAY, A., AND MEURER, A. Correcting Errors
in RSA Private Keys. In Proceedings of CRYPTO (2010).

HENINGER, N., AND SHACHAM, H. Reconstructing rsa private
keys from random key bits. In International Cryptology Confer-
ence (CRYPTO) (2009).

HUTTER, M., AND SCHMIDT, J.-M. The temperature side
channel and heating fault attacks. In Smart Card Research
and Advanced Applications, A. Francillon and P. Rohatgi, Eds.,
vol. 8419 of Lecture Notes in Computer Science. Springer Inter-
national Publishing, 2014, pp. 219-235.

KARATSUBA, A., AND OFMAN, Y. Multiplication of many-
digital numbers by automatic computers. Proceedings of the
USSR Academy of Sciences 145, 293-294 (1962).

KEYSIGHT. N9020A MXA Spectrum Analyzer. https://
www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-
signal-analyzer-10-hz-to-265-ghz?cc=US&lc=eng,
accessed February 4, 2018.

KHAN, H. A., ALAM, M., ZAJIC, A., AND PRVULOVIC, M.
Detailed tracking of program control flow using analog side-
channel signals: a promise for iot malware detection and a
threat for many cryptographic implementations. In SPIE De-

fense+Security - Cyber Sensing (2018).

KHUN, M. G. Compromising emanations: eavesdropping risks
of computer displays. The complete unofficial TEMPEST web
page: http://www.eskimo.com/ joelm/tempest.html (2003).

KOCHER, P. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Proceedings of
CRYPTO’96, Springer, Lecture notes in computer science (1996),
pp. 104-113.

KOCHER, P., JAFFE, J., AND JUN, B. Differential power anal-
ysis: leaking secrets. In Proceedings of CRYPTO’99, Springer,
Lecture notes in computer science (1999), pp. 388-397.

MESSERGES, T. S., DABBISH, E. A., AND SLOAN, R. H.
Power analysis attacks of modular exponentiation in smart cards.
In Proceedings of Cryptographic Hardware and Embedded Sys-
tems - CHES 1999 (1999), pp. 144-157.

OLIMEX. A13-OLinuXino-MICRO User Manual.
https://www.olimex.com/Products/OLinuXino/A13/
A13-0LinuXino-MICRO/open-source-hardware, accessed
April 3, 2016.

OPENSSL SOFTWARE FOUNDATION. OpenSSL Cryptography
and SSL/TLS Toolkit. https://www.openssl.org.

PERCIVAL, C. Cache missing for fun and profit. In Proc. of
BSDCan (2005).

SAMSUNG. Samsung Galaxy Centura SCH-S738C User Manual
with Specs. http://wuw.boeboer.com/samsung-galaxy-
centura-sch-s738c-user-manual-guide-straight-
talk/, June 7, 2013.

SCHINDLER, W. A timing attack against RSA with Chinese re-
mainder theorem. In Proceedings of Cryptographic Hardware
and Embedded Systems - CHES 2000 (2000), pp. 109-124.

USENIX Association

27th USENIX Security Symposium 601

https://www.ettus.com/product/details/USRP-B200mini-i
https://www.ettus.com/product/details/USRP-B200mini-i
https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-ghz?cc=US&lc=eng
https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-ghz?cc=US&lc=eng
https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-ghz?cc=US&lc=eng
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
https://www.openssl.org
http://www.boeboer.com/samsung-galaxy-centura-sch-s738c-user-manual-guide-straight-talk/
http://www.boeboer.com/samsung-galaxy-centura-sch-s738c-user-manual-guide-straight-talk/
http://www.boeboer.com/samsung-galaxy-centura-sch-s738c-user-manual-guide-straight-talk/

[42]

[43]

[44]

[45]

[46]

SHAMIR, A., AND TROMER, E. Acoustic cryptanalysis (On nosy
people and noisy machines). http://tau.ac.il/"tromer/acoustic/.

TsuNoO, Y., TSUJIHARA, E., MINEMATSU, K., AND
MivAUcHI, H. Cryptanalysis of block ciphers implemented
on computers with cache. In Proceedings of the International
Symposium on Information Theory and its Applications (2002),
pp. 803-806.

WANG, Z., AND LEE, R. B. New cache designs for thwarting
software cache-based side channel attacks. In ISCA ’'07: Pro-
ceedings of the 34th annual international symposium on Com-
puter architecture (2007), ACM, pp. 494-505.

YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In 23rd
USENIX Security Symposium (USENIX Security 14) (San Diego,
CA, 2014), USENIX Association, pp. 719-732.

ZAJIC, A., AND PRVULOVIC, M. Experimental demonstration
of electromagnetic information leakage from modern processor-
memory systems. Electromagnetic Compatibility, IEEE Transac-
tions on 56, 4 (Aug 2014), 885-893.

602 27th USENIX Security Symposium

USENIX Association

	Introduction
	Our Contributions
	Threat Model
	Assumptions
	Targeted Software
	Targeted Hardware
	Current Status of Mitigation

	Background
	Proposed Attack Method
	Receiving the Signal
	Identifying Relevant Parts of the Signal
	Recovering Exponent Bits in the Fixed-window Implementation
	Recovering Exponent Bits in the Sliding-window Implementation
	Full Recovery of RSA Private Key Using Recovered Exponent Bits

	Evaluation
	Experimental Setup
	Experimental Results
	Results for OpenSSL's Constant-Time Fixed-Window Implementation
	Results for the Sliding-Window Implementation

	Mitigation
	Conclusions
	Acknowledgments

