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Abstract
Voice cloning is a highly desired feature for
personalized speech interfaces. Neural network
based speech synthesis has been shown to gen-
erate high quality speech for a large number of
speakers. In this paper, we introduce a neural
voice cloning system that takes a few audio sam-
ples as input. We study two approaches: speaker
adaptation and speaker encoding. Speaker adapta-
tion is based on fine-tuning a multi-speaker gener-
ative model with a few cloning samples. Speaker
encoding is based on training a separate model
to directly infer a new speaker embedding from
cloning audios and to be used with a multi-speaker
generative model. In terms of naturalness of the
speech and its similarity to original speaker, both
approaches can achieve good performance, even
with very few cloning audios. 1 While speaker
adaptation can achieve better naturalness and simi-
larity, the cloning time or required memory for the
speaker encoding approach is significantly less,
making it favorable for low-resource deployment.

1. Introduction
Generative models based on deep learning have been suc-
cessfully applied to many domains such as image synthesis
(van den Oord et al., 2016; Karras et al., 2017), audio syn-
thesis (Wang et al., 2017; Engel et al., 2017; Arik et al.,
2017a), and language modeling (Jozefowicz et al., 2016;
Merity et al., 2017). Deep neural networks are capable of
modeling complex data distributions and scale well to large
training data. They can be further conditioned on external
inputs to control high-level behaviors, such as dictating the
content and style of generated samples.

For speech synthesis, generative models can be conditioned
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Sercan Ö. Arık <sercanarik@baidu.com>, Jitong Chen <chenji-
tong01@baidu.com>, Kainan Peng <pengkainan@baidu.com>,
Wei Ping <pingwei01@baidu.com>.

1Cloned audio samples can be found in https://
audiodemos.github.io

on text (Wang et al., 2017) and speaker identity (Arik et al.,
2017b; Ping et al., 2017). While text carries linguistic in-
formation and controls the content of the generated speech,
speaker representation captures speaker characteristics such
as pitch range, speech rate and accent. One approach for
multi-speaker speech synthesis is to jointly train a genera-
tive model and speaker embeddings on triplets of (text, au-
dio, speaker identity) (Arik et al., 2017b; Ping et al., 2017).
Embeddings for all speakers are randomly initialized and
trained with a generative loss. The idea is to encode the
speaker-dependent information in low-dimensional embed-
dings, while sharing the majority of the model parameters
for all speakers. One limitation of such a model is that it can
only generate speech for speakers observed during training.
A more interesting task is to learn the voice of an unseen
speaker from a few speech samples, or voice cloning. Voice
cloning can be used in many speech-enabled applications to
provide personalized user experience.

In this work, we focus on voice cloning with limited speech
samples from an unseen speaker, which can also be con-
sidered in the context of few-shot generative modeling of
speech. With a large number of samples, a generative model
can be trained from scratch for any target speaker. Yet,
few-shot generative modeling is challenging besides being
appealing. The generative model needs to learn the speaker
characteristics from limited information provided by a few
audio samples and generalize to unseen texts. We explore
voice cloning methods with the recently proposed end-to-
end neural speech synthesis approaches (Wang et al., 2017;
Ping et al., 2017), which apply sequence-to-sequence mod-
eling with attention mechanism. In neural speech synthesis,
an encoder converts text (character or phoneme sequences)
to hidden representations, and a decoder estimates the time-
frequency representation of speech in an autoregressive way.
Compared to traditional unit-select speech synthesis (Sag-
isaka et al., 1992) and statistical parametric speech synthe-
sis (Zen et al., 2009), neural speech synthesis has a simpler
pipeline and produces more natural speech (Shen et al.,
2017b).

An end-to-end multi-speaker speech synthesis model is typ-
ically parameterized by the weights of generative model
and a speaker embedding look-up table, where the latter is
supposed to carry speaker characteristics. In this work, we
investigate two questions. First, how well can speaker em-
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beddings capture the differences between speakers? Second,
how well can speaker embeddings be learned for an unseen
speaker with only a few samples? We compare these two
voice cloning approaches: (i) speaker adaptation and (ii)
speaker encoding, in terms of speech naturalness, speaker
similarity, cloning/inference time and model footprint.

2. Voice Cloning
We consider a multi-speaker generative model,
f(ti,j , si;W, esi), which takes a text ti,j and a speaker
identity si. The model is parameterized by W , the trainable
parameters in encoder and decoder, and esi , the trainable
speaker embedding corresponding to si. Both W and
esi are optimized by minimizing a loss function L that
penalizes the difference between generated and ground
truth audios (for example, a L1 or L2 loss on spectrogram):

min
W,e

E si∼S,
(ti,j ,ai,j)∼Tsi

{L (f(ti,j , si;W, esi),ai,j)} (1)

where S is a set of speakers, Tsi is a training set of text-
audio pairs for speaker si, and ai,j is the ground-truth audio
for ti,j of speaker si. The expectation is estimated over text-
audio pairs of all training speakers. In practice, E operator
for the loss function is approximated by minibatch. We use
Ŵ and ê to denote the trained parameters and embeddings.

Speaker embeddings have been shown to effectively cap-
ture speaker differences for multi-speaker speech synthe-
sis. They are low-dimension continuous representations
of speaker characteristics (Arik et al., 2017b; Ping et al.,
2017). Despite being trained with a purely generative loss,
discriminative properties (e.g. gender or accent) can indeed
be observed in embedding space (Arik et al., 2017b).

In voice cloning, we aim to extract the speaker character-
istics for an unseen speaker sk (that is not in S) from a
set of cloning audios Ask , and generate a different audio
conditioned on a given text for that speaker. The two perfor-
mance metrics for the generated audio are (i) how natural
it is and (ii) whether it sounds like it is pronounced by the
same speaker.

The two approaches for neural voice cloning are summa-
rized in Fig. 1 and explained in the following sections.

2.1. Speaker adaptation

The idea of speaker adaptation is to fine-tune a trained multi-
speaker model for an unseen speaker using a few audios
and corresponding texts by applying gradient descent. Fine-
tuning can be applied to either the speaker embedding (Taig-
man et al., 2017) or the whole model.

For embedding-only adaptation, we have the following ob-

jective:

min
esk

E(tk,j ,ak,j)∼Tsk

{
L
(
f(tk,j , sk; Ŵ , esk),ak,j

)}
(2)

where Tsk is a set of text-audio pairs for the target speaker
sk. For whole model adaptation, we have the following
objective:

min
W,esk

E(tk,j ,ak,j)∼Tsk {L (f(tk,j , sk;W, esk),ak,j)} (3)

Although the entire model provides more degrees of free-
dom for speaker adaptation, its optimization is challenging
especially for a small number of cloning samples. While
running the optimization, careful choice of the number of
iterations is crucial for avoiding underfitting or overfitting.

2.2. Speaker encoding

We propose a speaker encoding method to directly estimate
the speaker embedding from audio samples of an unseen
speaker. Such a model does not require fine-tuning during
voice cloning and therefore the same model can be used for
all unseen speakers.

Specifically, the speaker encoding function, g(Ask ; Θ),
takes a set of cloning audio samples Ask and estimates
esk . The function is parametrized by Θ. Ideally, the speaker
encoder can be jointly trained with multi-speaker genera-
tive model from scratch, with a loss function defined for
generated audio quality:

min
W,Θ

E si∼S,
(ti,j ,ai,j)∼Tsi

{L (f(ti,j , si;W, g(Asi ; Θ)),ai,j)} .

(4)
Note that speaker encoder is trained with existing speakers.
During training, a set of cloning audio samples Asi are ran-
domly sampled for training speaker si. During inference,
Ask , audio samples from the target speaker sk, is used to
compute g(Ask ; Θ). However, we have observed optimiza-
tion challenges when the training process formulated in Eq.
4 is started from scratch. One potential problem is that the
model fits an average voice to minimize the overall genera-
tive loss, commonly referred as mode collapse in generative
modeling literature. One idea to address mode collapse is
to introduce discriminative loss functions for intermediate
embeddings, 2 or generated audios. 3 In our case, however,
such approaches only slightly improve speaker difference.

Instead, we propose training speaker encoder separately.
Speaker embeddings êsi are extracted from a trained multi-
speaker generative model f(ti,j , si;W, esi). Then, the

2We have experimented classification accuracy by mapping the
embeddings to speaker class labels via a softmax layer.

3We have experimented integrating a pre-trained speaker clas-
sifier to promote speaker difference of generated audios.
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Figure 1. Speaker adaptation and speaker encoding approaches for training, cloning and audio generation.

speaker encoder model g(Ask ; Θ) is trained to predict the
embeddings from sampled cloning audios. There can be
several objective functions for the corresponding regression
problem. We obtain the best results by simply using an L1
loss between the estimated and target embeddings:

min
Θ

Esi∼S {|g(Asi ; Θ)− êsi)|} , (5)

Eventually, the entire model can be jointly fine-tuned based
on the objective function Eq. 4, using pre-trained Ŵ and
pre-trained Θ̂ as initial points. Fine-tuning helps the genera-
tive model learn how to compensate the errors of embedding
estimation, and we observe less attention problems. How-
ever, generative loss still dominates learning and speaker
differences in generated audios may be slightly reduced (see
Appendix A for details).

For speaker encoder model g(Ask ; Θ), we propose a neural
network architecture comprising the following three parts
(show in Fig. 2):

(i) Spectral processing: We compute mel-spectrograms for
cloning audio samples and pass them to PreNet, which
contains fully-connected (FC) layers with exponential linear
unit (ELU) for feature transformation.

Self Attention

Global mean pooling

× Nconv

Mel spectrograms

Speaker embedding

Convolution Block

PreNet

Figure 2. Speaker encoder architecture. See Appendix A for de-
tails.

(ii) Temporal processing: We incorporate temporal contexts
using several convolutional layers with gated linear unit and
residual connections. Then, average pooling is applied to
summarize the whole utterance.

(iii) Cloning sample attention: Considering that differ-
ent cloning audios contain different amount of speaker
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information, we use a multi-head self-attention mecha-
nism (Vaswani et al., 2017) to compute the weights for
different audios and get aggregated embeddings.

2.3. Discriminative models for evaluation

Voice cloning performance metrics can be based on human
evaluations through crowdsourcing platforms, but they are
slow and expensive during model development. In this
section, we propose two evaluation methods using discrimi-
native models.

2.3.1. SPEAKER CLASSIFICATION

Speaker classifier determines which speaker an audio sam-
ple belongs to. For voice cloning evaluation, a speaker
classifier can be trained on the set of target speakers used
for cloning. High-quality voice cloning would result in high
speaker classification accuracy. We use a speaker classifier
with similar spectral and temporal processing layers shown
in Fig. 7 and an additional embedding layer before the
softmax function.

2.3.2. SPEAKER VERIFICATION

Speaker verification is the task of authenticating the claimed
identity of a speaker, based on a test audio and enrolled
audios from the speaker. In particular, it performs binary
classification to identify whether the test audio and enrolled
audios are from the same speaker (e.g., Snyder et al., 2016).
In this work, we consider the end-to-end text-independent
speaker verification framework (Snyder et al., 2016) (see
Appendix C for more details of model architecture). One can
train a speaker verification model on a multi-speaker dataset,
then directly test whether the cloned audio and the ground
truth audio are from the same speaker. Unlike the speaker
classification approach, speaker verification model does not
require training with the audios from the target speaker for
cloning, hence it can be used for unseen speakers with a
few samples. As the quantitative performance metric, the
equal error-rate (EER) 4 from speaker verification model
can be used to measure how close the cloned audios are to
the ground truth audios.

3. Experiments
We compare two approaches for voice cloning. For speaker
adaptation approach, we train a multi-speaker generative
model and adapt it to a target speaker by fine-tuning the
embedding or the whole model. For speaker encoding ap-
proach, we train a multi-speaker generative model and a
speaker encoder. The estimated speaker embedding is then

4One may change decision threshold to trade-off between false
acceptance rate and false rejection rate. When the two rates are
equal, it is referred to as the equal error rate.

fed to multi-speaker generative model to generate audios for
a target speaker.

3.1. Datasets

Multi-speaker generative model and speaker encoder model
are trained using LibriSpeech dataset (Panayotov et al.,
2015), which contains audios for 2484 speakers sampled at
16 KHz, totalling 820 hours. LibriSpeech is a dataset for
automatic speech recognition, and its audio quality is lower
compared to speech synthesis datasets.5

Voice cloning is performed using VCTK dataset (Veaux
et al., 2017). VCTK consists of audios for 108 native speak-
ers of English with various accents. To be consistent with
LibriSpeech dataset, VCTK audio samples are downsam-
pled to 16 KHz. For a chosen speaker, a few cloning audios
are sampled randomly for each experiment. The sentences
presented in Appendix B are used to generate audios for
evaluation.

3.2. Specifications

3.2.1. MULTI-SPEAKER GENERATIVE MODEL

Our multi-speaker generative model is based on the con-
volutional sequence-to-sequence architecture proposed in
(Ping et al., 2017), with similar hyperparameters and Griffin-
Lim vocoder. To get better performance, we increase the
time-resolution by reducing the hop length and window size
parameters to 300 and 1200, and add a quadratic loss term
to penalize larger amplitude components superlinearly. For
speaker adaptation experiments, we reduce the embedding
dimensionality to 128, as it yields less overfitting problems.
Overall, the baseline multi-speaker generative model has
around 25M trainable parameters.

3.2.2. SPEAKER ADAPTATION

For speaker adaptation approach, either the entire multi-
speaker generative model parameters or only its speaker
embeddings are fine-tuned. For both cases, optimization is
separately applied to each of the 108 speakers from VCTK
dataset.

3.2.3. SPEAKER ENCODER MODEL

For speaker encoding approach, we train speaker encoders
for different number of cloning audios separately, to obtain
the minimum validation loss. We convert cloning audios to
log-mel spectrograms with 80 frequency bands, a hop length
of 400, a window size of 1600. Log-mel spectrograms are
fed to spectral processing layers, which are composed of
2-layer prenet of size 128. Then, temporal processing is

5We designed a segmentation and denoising pipeline to process
LibriSpeech, as described in (Ping et al., 2017)
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applied with two 1-dimension convolutional layers with a
filter width of 12. Finally, multi-head attention is applied
with 2 heads and a unit size of 128 for keys, queries and
values. The final embedding size is 512. To construct
validation set, 25 speakers are held out from training set.
A batch size of 64 is used while training, with an initial
learning rate of 0.0006 with annealing rate of 0.6 applied
every 8000 iterations. Mean absolute error for the validation
set is shown in Fig. 11 in Appendix D. An increasing
number of cloning audios leads to more accurate speaker
embedding estimation, especially with introduction of the
attention mechanism proposed (see Appendix D for more
details about the learned attention coefficients).

3.2.4. SPEAKER CLASSIFICATION MODEL

We train a speaker classifier on VCTK dataset to classify
which of the 108 speakers an audio sample belongs to.
Speaker classifier has a fully-connected layer of size 256,
6 convolutional layers with 256 filters of width 4, and a
final embedding layer of size 32. The model achieves 100%
accuracy for validation set of size 512.

3.2.5. SPEAKER VERIFICATION MODEL

We train a speaker verification model on the LibriSpeech
dataset to measure the quality of cloned audios compared
to ground truth audios, to be used for any unseen speaker.
We hold out 50 speakers from Librispeech as a validation
set for unseen speakers. The equal-error-rates (EERs) are
estimated by randomly pairing up utterances from the same
or different speakers (50% for each case) in test set. We
perform 40960 trials for each test set. We describe the
details of speaker verification model in Appendix C.

3.3. Voice cloning performance

For speaker adaptation approach, we pick the number of
iterations using speaker classification accuracy. For whole
model adaptation, we pick the number of iterations.6 For
speaker embedding adaptation, we fix the number of iter-
ations as 100K for all cases. For speaker encoding, we
consider voice cloning with and without joint fine-tuning of
the speaker encoder and multi-speaker generative model.7

Table 1 summarizes the approaches and lists the require-
ments for training, data, cloning time and footprint size.

3.3.1. EVALUATIONS BY DISCRIMINATIVE MODELS

For speaker adaptation approaches, Fig. 3 show the speaker
classification accuracy vs. the number of iterations. Both

6100 for 1, 2 and 3 cloning audio samples, 1000 for 5 and 10
cloning audio samples

7The learning rate and annealing parameters are optimized for
joint fine-tuning.

Figure 3. Performance of whole model adaptation and speaker
embedding adaptation for voice cloning in terms of speaker clas-
sification accuracy. Different numbers of cloning samples and
fine-tuning iterations are evaluated.

adaptation methods benefit from more cloning samples
when the sample count is low. After 10 samples, increasing
sample count does not significantly improve speaker classi-
fication accuracy. In the low sample count regime, adapting
the speaker embedding is less likely to overfit the samples
than adapting the whole model. The two methods also re-
quire different numbers of iterations to converge. Compared
to whole model adaptation, which converges around 1000
iterations for even 100 cloning audio samples, embedding
adaptation takes significantly more iterations to converge.

Figure 4. Comparison of speaker adaptation and speaker encoding
approaches in term of speaker classification accuracy with different
numbers of cloning samples.
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Speaker adaptation Speaker encoding
Approaches Embedding-only Whole-model Without fine-tuning With fine-tuning
Pre-training Multi-speaker generative model

Data Text and audio Audio
Cloning time ∼ 8 hours ∼ 0.5− 5 mins ∼ 1.5− 3.5 secs ∼ 1.5− 3.5 secs

Inference time ∼ 0.4− 0.6 secs
Parameters per speaker 128 ∼ 25 million 512 512

Table 1. Comparison of requirements for speaker adaptation and speaker encoding. Cloning time interval assumes 1-10 cloning audios.
Inference time is for an average sentence. All assume implementation on a TitanX GPU.
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Figure 5. Speaker verification EER (using 5 enrollment audio) for
different numbers of cloning samples.

Figs. 4 and 5 show the classification accuracy and equal-
error-rate (EER) for both speaker adaptation and encoding
approaches, obtained by speaker classification and speaker
verification models. Both speaker adaptation and speaker en-
coding approaches benefit from more cloning audios. When
the number of cloning audio samples exceed 5, whole model
adaptation outperforms the other techniques in both metrics.
Speaker encoding approaches yield a lower classification ac-
curacy compared to embedding adaptation, but they achieve
similar speaker verification performance.

3.3.2. HUMAN EVALUATIONS

Besides evaluations by discriminative models, we also con-
duct subject tests on Amazon Mechanical Turk framework.
For assessment of the naturalness of the generated audios,
we use 5-scale mean opinion score (MOS). For assessment
of how similar the generated audios are to the ground truth
audios from target speakers, we use 4-scale similarity score
with the same question and categories in (Wester et al.,
2016). We conduct each evaluation independently, so the
cloned audios of two different models are not directly com-
pared during rating. Multiple votes on the same sample are

aggregated by a majority voting rule.

Tables 2 and 3 show the results of human evaluations. Both
speaker adaptation approaches benefit from higher num-
ber of cloning audios. The improvement with high sam-
ple count is more significant for whole model adaptation
as expected, since there are more degrees of freedom pro-
vided to be tuned for that particular speaker. There is a
very small difference in naturalness for speaker encoding
approaches when the number of cloning audios is increased.
Most importantly, speaker encoding does not degrade the
naturalness of the baseline multi-speaker generative model.
Fine-tuning improves the naturalness of speaker encoding
as expected, since it allows the generative model to learn
how to compensate the errors of the speaker encoder while
training. Similarity scores slightly improve with higher sam-
ple counts for speaker encoding, and match the scores for
speaker embedding adaptation. The gap of similarity with
ground truth is mostly attributed to the limited naturalness
of the outputs, as they are trained with LibriSpeech dataset.

3.4. Speaker embedding space and manipulation

As shown in Fig. 6 and Appendix E, speaker encoder models
map speakers into a meaningful latent space. Inspired by
word embedding manipulation (e.g. via simple algebraic
operations as king - queen = male - female), we consider
applying algebraic operations to the inferred embeddings to
transform their speech characteristics.

To transform gender, we get the averaged speaker embed-
dings for female and male, and add their difference to a
particular speaker. For example,

BritishMale + AveragedFemale

− AveragedMale

can yield a British female speaker. Similarly, we can con-
sider region of accent transformation by

BritishMale + AveragedAmerican

− AveragedBritish

to obtain an American male speaker. Our results (https:
//audiodemos.github.io/) demonstrate high qual-
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Approach Sample count
1 2 3 5 10

Ground-truth (at 16 KHz) 4.66±0.06
Multi-speaker generative model 2.61±0.10

Speaker adaptation: embedding-only 2.27±0.10 2.38±0.10 2.43±0.10 2.46±0.09 2.67±0.10
Speaker adaptation: whole-model 2.32±0.10 2.87±0.09 2.98±0.11 2.67±0.11 3.16±0.09

Speaker encoding: without fine-tuning 2.76±0.10 2.76±0.09 2.78±0.10 2.75±0.10 2.79±0.10
Speaker encoding: with fine-tuning 2.93±0.10 3.02±0.11 2.97±0.1 2.93±0.10 2.99±0.12

Table 2. Mean Opinion Score (MOS) evaluations for naturalness with 95% confidence intervals.

Approach Sample count
1 2 3 5 10

Ground-truth: same speaker 3.91±0.03
Ground-truth: different speakers 1.52±0.09

Speaker adaptation: embedding-only 2.66±0.09 2.64±0.09 2.71±0.09 2.78±0.10 2.95±0.09
Speaker adaptation: whole-model 2.59±0.09 2.95±0.09 3.01±0.10 3.07±0.08 3.16±0.08

Speaker encoding: without fine-tuning 2.48±0.10 2.73±0.10 2.70±0.11 2.81±0.10 2.85±0.10
Speaker encoding: with fine-tuning 2.59±0.12 2.67±0.12 2.73±0.13 2.77±0.12 2.77±0.11

Table 3. Similarity score evaluations with 95% confidence intervals.
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Figure 6. Visualization of estimated speaker embeddings by
speaker encoder. The first two principal components of the average
speaker embeddings for the speaker encoder with 5 sample count.
Only British and North American regional accents are shown as
they constitute the majority of the labeled speakers in the VCTK
dataset. Please see Appendix E for more detailed analysis.

ity audios with specific gender and accent characteristics
obtained in this way.

4. Related Work
4.1. Few-shot generative models

Humans can learn most new generative tasks from only a
few examples, and it has motivated research on few-shot
generative models.

Early studies on few-shot generative modeling mostly focus
on Bayesian models. In (Lake et al., 2013) and (Lake et al.,
2015), hierarchical Bayesian models are used to exploit
compositionality and causality for few-shot generation of
characters. In (Lake et al., 2014), a similar idea is modified
to acoustic modeling task, with the goal of generating new
words in a different language.

Recently, deep learning approaches are adapted to few-shot
generative modeling particularly for image generation appli-
cations. In (Reed et al., 2017), few-shot distribution estima-
tion is considered using an attention mechanism and meta-
learning procedure, for conditional image generation. In
(Azadi et al., 2017), few-shot learning is applied to font style
transfer, by modeling the glyph style from a few observed
letters, and synthesizing the whole alphabet conditioned on
the estimated style. The technique is based on multi-content
generative adversarial networks, penalizing the unrealis-
tic synthesized letters compared to the ground truth. In
(Rezende et al., 2016), sequential generative modeling is ap-
plied for one-shot generalization in image generation, using
a spatial attentional mechanism.
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4.2. Speaker embeddings in speech processing

Speaker embedding is a well-established approach to en-
code discriminative information in speakers. It has been
used in many speech processing tasks such as speaker recog-
nition/verification (Li et al., 2017), speaker diarization (Rou-
vier et al., 2015), automatic speech recognition (Doddipatla,
2016) and speech synthesis (Arik et al., 2017b). In some
of these, the model explicitly learns to output embeddings
with a discriminative task such as speaker classification.
In others, embeddings are randomly initialized and implic-
itly learned from an objective function that is not directly
related to speaker discrimination. For example, in (Arik
et al., 2017b), a multi-speaker generative model is trained
to generate audio from text, where speaker embeddings are
implicitly learned from a generative loss function. This
approach encourages most parts of the model to be speaker-
independent and shared, while pushing speaker-related in-
formation into embeddings.

4.3. Voice conversion

The goal of voice conversion is to modify an utterance from
source speaker to make it sound like the target speaker,
while keeping the linguistic contents unchanged.

One common approach is dynamic frequency warping, to
align spectra of different speakers. (Agiomyrgiannakis &
Roupakia, 2016) proposes a dynamic programming algo-
rithm that simultaneously estimates the optimal frequency
warping and weighting transform while matching source
and target speakers using a matching-minimization algo-
rithm. Wu et al. (2016) uses a spectral conversion approach
integrated with the locally linear embeddings for manifold
learning. There are also approaches to model spectral con-
version using neural networks such as (Desai et al., 2010),
(Chen et al., 2014), (Hwang et al., 2015), that are typically
trained with a large amount of audio pairs of target and
source speakers.

5. Conclusions
In this paper, we have demonstrated two approaches for
neural voice cloning: speaker adaptation and speaker en-
coding. We demonstrate that both approaches can achieve
reasonable cloning quality even with only a few cloning
audios.

For naturalness, we demonstrate that both speaker adapta-
tion and speaker encoding can achieve an MOS for natu-
ralness similar to baseline multi-speaker generative model.
Thus, the proposed techniques can potentially be used with
better multi-speaker models in the future (such as replac-
ing Griffin-Lim with WaveNet vocoder as in (Shen et al.,
2017a)).

For similarity, we demonstrate that both approaches benefit
from a larger number of cloning audios. The performance
gap between whole-model and embedding-only adaptation
indicates that some discriminative speaker information still
exists in the generative model besides speaker embeddings.
The benefit of compact representation via embeddings is
fast cloning and small footprint size per user. Especially for
the applications with resource constraints, these practical
considerations should clearly favor for the use of speaker
encoding approach. Methods to fully embed the speaker
information into the embeddings would be an important
research direction to improve performance of voice cloning.

Training multi-speaker generative model in this paper is
done using a speech recognition dataset with low-quality
audios and limited diversity in representation of universal
set of speakers. Improvements in the quality of dataset
will result in higher naturalness and similarity of generated
samples. Also, increasing the amount and diversity of speak-
ers should enable a more meaningful speaker embedding
space, which can improve the similarity obtained by both ap-
proaches. We expect our techniques to benefit significantly
from a large-scale and high-quality multi-speaker speech
dataset.

We believe that there are many promising horizons for im-
provement in voice cloning. Advances in meta-learning,
i.e. systematic approach of learning-to-learn while training,
should be promising to improve voice cloning, e.g. by inte-
grating speaker adaptation or encoding into training, or by
inferring the model weights in a more flexible way than the
speaker embeddings are being used.
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Appendices
A. Detailed speaker encoder architecture
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Figure 7. Speaker encoder architecture with intermediate state dimensions. (batch: batch size, Nsamples: number of cloning audio
samples |Ask |, T : number of mel spectrograms timeframes, Fmel: number of mel frequency channels, Fmapped: number of frequency
channels after prenet, dembedding: speaker embedding dimension). Multiplication operation at the last layer represents inner product
along the dimension of cloning samples.
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B. Voice cloning test sentences

Figure 8. The sentences used to generate test samples for the voice cloning models. The white space characters / and % follow the same
definition as in (Ping et al., 2017).

C. Speaker verification model
Given a set of (e.g., 1∼5) enrollment audios 8 and a test audio, speaker verification model performs a binary classification
and tells whether the enrollment and test audios are from the same speaker. Although using other speaker verification
models (e.g., Snyder et al., 2016) would also suffice, we choose to create our own speaker verification models using
convolutional-recurrent architecture (Amodei et al., 2016). We note that our equal-error-rate results on test set of unseen
speakers are on par with the state-of-the-art speaker verification models. The architecture of our model is illustrated in
Figure 9. We compute mel-scaled spectrogram of enrollment audios and test audio after resampling the input to a constant
sampling frequency. Then, we apply two-dimensional convolutional layers convolving over both time and frequency bands,
with batch normalization and ReLU non-linearity after each convolution layer. The output of last convolution layer is feed
into a recurrent layer (GRU). We then mean-pool over time (and enrollment audios if there are many), then apply a fully
connected layer to obtain the speaker encodings for both enrollment audios and test audio. We use the probabilistic linear
discriminant analysis (PLDA) for scoring the similarity between the two encodings (Prince & Elder, 2007; Snyder et al.,
2016). The PLDA score (Snyder et al., 2016) is defined as,

s(x,y) = w · x>y − x>Sx− y>Sy + b (6)

where x and y are speaker encodings of enrollment and test audios respectively after fully-connected layer, w and b are
scalar parameters, and S is a symmetric matrix. Then, s(x,y) is feed into a sigmoid unit to obtain the probability that
they are from the same speaker. The model is trained using cross-entropy loss. Table 4 lists hyperparameters of speaker
verification model for Librispeech dataset.

8Enrollment audios are from the same speaker.
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Figure 9. Architecture of speaker verification model.

Parameter
Audio resampling freq. 16 KHz

Bands of Mel-spectrogram 80
Hop length 400

Convolution layers, channels, filter, strides 1, 64, 20× 5, 8× 2
Recurrent layer size 128
Fully connected size 128
Dropout probability 0.9

Learning Rate 10−3

Max gradient norm 100
Gradient clipping max. value 5

Table 4. Hyperparameters of speaker verification model for LibriSpeech dataset.
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Figure 10. Speaker verification EER (using 1 enrollment audio) vs. number of cloning audio samples.
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D. Implications of attention
For a trained speaker encoder model, Fig. 12 exemplifies attention distributions for different audio lengths. The attention
mechanism can yield highly non-uniformly distributed coefficients while combining the information in different cloning
samples, and especially assigns higher coefficients to longer audios, as intuitively expected due to the potential more
information content in them.

Figure 11. Mean absolute error in embedding estimation vs. the number of cloning audios for a validation set of 25 speakers, shown with
the attention mechanism and without attention mechanism (by simply averaging).
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Figure 12. Inferred attention coefficients for the speaker encoder model with Nsamples = 5 vs. lengths of the cloning audio samples. The
dashed line corresponds to the case of averaging all cloning audio samples.
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E. Speaker embedding space learned by the encoder
To analyze the speaker embedding space learned by the trained speaker encoders, we apply principal component analysis to
the space of inferred embeddings and consider their ground truth labels for gender and region of accent from the VCTK
dataset. Fig. 13 shows visualization of the first two principal components. We observe that speaker encoder maps the
cloning audios to a latent space with highly meaningful discriminative patterns. In particular for gender, a one dimensional
linear transformation from the learned speaker embeddings can achieve a very high discriminative accuracy - although the
models never see the ground truth gender label while training.

Sample count:1 Sample count:1

Sample count:2 Sample count:2

Sample count:3 Sample count:3

Sample count:5 Sample count:5

Sample count:10 Sample count:10

Female
Male

Great Britain
North American
Ireland
South Hemisphere
Asia

Figure 13. First two principal components of the inferred embeddings, with the ground truth labels for gender and region of accent for the
VCTK speakers as in (Arik et al., 2017b).
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F. Similarity scores
For the result in Table 3, Fig. 14 shows the distribution of the scores given by MTurk users as in (Wester et al., 2016). For
10 sample count, the ratio of evaluations with the ‘same speaker’ rating exceeds 70 % for all models.

Figure 14. Distribution of similarity scores for 1 and 10 sample counts.


